61 research outputs found
Semantics-based information extraction for detecting economic events
As today's financial markets are sensitive to breaking news on economic events, accurate and timely automatic identification of events in news items is crucial. Unstructured news items originating from many heterogeneous sources have to be mined in order to extract knowledge useful for guiding decision making processes. Hence, we propose the Semantics-Based Pipeline for Economic Event Detection (SPEED), focusing on extracting financial events from news articles and annotating these with meta-data at a speed that enables real-time use. In our implementation, we use some components of an existing framework as well as new components, e.g., a high-performance Ontology Gazetteer, a Word Group Look-Up component, a Word Sense Disambiguator, and components for detecting economic events. Through their interaction with a domain-specific ontology, our novel, semantically enabled components constitute a feedback loop which fosters future reuse of acquired knowledge in the event detection process
Case based reasoning as a model for cognitive artificial intelligence.
Cognitive Systems understand the world through learning and experience. Case Based Reasoning (CBR) systems naturally capture knowledge as experiences in memory and they are able to learn new experiences to retain in their memory. CBR's retrieve and reuse reasoning is also knowledge-rich because of its nearest neighbour retrieval and analogy-based adaptation of retrieved solutions. CBR is particularly suited to domains where there is no well-defined theory, because they have a memory of experiences of what happened, rather than why/how it happened. CBR's assumption that 'similar problems have similar solutions' enables it to understand the contexts for its experiences and the 'bigger picture' from clusters of cases, but also where its similarity assumption is challenged. Here we explore cognition and meta-cognition for CBR through self-refl ection and introspection of both memory and retrieve and reuse reasoning. Our idea is to embed and exploit cognitive functionality such as insight, intuition and curiosity within CBR to drive robust, and even explainable, intelligence that will achieve problemsolving in challenging, complex, dynamic domains
Book Review: S.O. Sheremetyeva “Linguistic Models and Tools for Processing Patent Claims”
Ниренбург Сергей, PhD, профессор когнитивных наук, профессор информатики, заведующий кафедрой когнитивных наук, Политехнический Институт Ренсселера, Трой, Нью-Йорк (США).
Sergei Nirenburg, PhD, Professor, Cognitive Science Professor, Computer Science Chair, Department of Cognitive Science, Rensselaer Polytechnic Institute, Troy, NY (USA)
- …