3,592 research outputs found
Assortativity and leadership emergence from anti-preferential attachment in heterogeneous networks
Many real-world networks exhibit degree-assortativity, with nodes of similar
degree more likely to link to one another. Particularly in social networks, the
contribution to the total assortativity varies with degree, featuring a
distinctive peak slightly past the average degree. The way traditional models
imprint assortativity on top of pre-defined topologies is via degree-preserving
link permutations, which however destroy the particular graph's hierarchical
traits of clustering. Here, we propose the first generative model which creates
heterogeneous networks with scale-free-like properties and tunable realistic
assortativity. In our approach, two distinct populations of nodes are added to
an initial network seed: one (the followers) that abides by usual preferential
rules, and one (the potential leaders) connecting via anti-preferential
attachments, i.e. selecting lower degree nodes for their initial links. The
latter nodes come to develop a higher average degree, and convert eventually
into the final hubs. Examining the evolution of links in Facebook, we present
empirical validation for the connection between the initial anti-preferential
attachment and long term high degree. Thus, our work sheds new light on the
structure and evolution of social networks
Explosive synchronization in weighted complex networks
The emergence of dynamical abrupt transitions in the macroscopic state of a
system is currently a subject of the utmost interest. Given a set of phase
oscillators networking with a generic wiring of connections and displaying a
generic frequency distribution, we show how combining dynamical local
information on frequency mismatches and global information on the graph
topology suggests a judicious and yet practical weighting procedure which is
able to induce and enhance explosive, irreversible, transitions to
synchronization. We report extensive numerical and analytical evidence of the
validity and scalability of such a procedure for different initial frequency
distributions, for both homogeneous and heterogeneous networks, as well as for
both linear and non linear weighting functions. We furthermore report on the
possibility of parametrically controlling the width and extent of the
hysteretic region of coexistence of the unsynchronized and synchronized states
Los jesuitas y el lulismo
Antes de finales del siglo xvii hay poca información para relacionar directamente la Compañía de Jesús con el pensamiento de Ramón Llull, a pesar de lo que se ha supuesto con relación al padre fundador de la orden y con excepciones como la de Jerónimo Nadal. En el siglo xviii destacan, en cambio, los estudios de los jesuitas mallorquines Andrés Moragues y, sobretodo, de Jaume Custurer, que estuvo en contacto con el editor de la Maguntina. Jean-Baptiste Sollier fue otro gran jesuita lulista. La expulsión de la Compañía en tiempos de Carlos III fue perjudicial para el desarrollo del lulismo. En el siglo xx algunos de los mejores especialistas en Ramón Llull han sido jesuitas, como Eusebi Colomer o Charles Lohr.Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed at sem hendrerit, hendrerit dolor vitae, convallis massa. Nunc eu urna in mi sollicitudin faucibus. Sed a nunc at felis rhoncus imperdiet. Vestibulum consequat posuere tortor vel fringilla. Fusce id nunc lectus. Aenean nec rhoncus risus. Cras a semper diam, ac sodales erat. Sed eget fringilla purus, sed posuere ex. Integer id enim diam. Ut et eleifend nulla, quis dapibus metus. Ut ullamcorper risus ut nisl blandit, in gravida libero pulvinar. Sed ac nisi vitae augue auctor sodales. Vivamus egestas accumsan felis. Mauris vitae nulla eu orci volutpat pulvinar
Relay synchronization in multiplex networks
Relay (or remote) synchronization between two not directly connected
oscillators in a network is an important feature allowing distant coordination.
In this work, we report a systematic study of this phenomenon in multiplex
networks, where inter-layer synchronization occurs between distant layers
mediated by a relay layer that acts as a transmitter. We show that this
transmission can be extended to higher order relay configurations, provided
symmetry conditions are preserved. By first order perturbative analysis, we
identify the dynamical and topological dependencies of relay synchronization in
a multiplex. We find that the relay synchronization threshold is considerably
reduced in a multiplex configuration, and that such synchronous state is mostly
supported by the lower degree nodes of the outer layers, while hubs can be
de-multiplexed without affecting overall coherence. Finally, we experimentally
validated the analytical and numerical findings by means of a multiplex of
three layers of electronic circuits.the analytical and numerical findings by
means of a multiplex of three layers of electronic circuits
Synchronization centrality and explosive synchronization in complex networks
Synchronization of networked oscillators is known to depend fundamentally on
the interplay between the dynamics of the graph's units and the microscopic
arrangement of the network's structure. For non identical elements, the lack of
quantitative tools has hampered so far a systematic study of the mechanisms
behind such a collective behavior. We here propose an effective network whose
topological properties reflect the interplay between the topology and dynamics
of the original network. On that basis, we are able to introduce the
"synchronization centrality", a measure which quantifies the role and
importance of each network's node in the synchronization process. In
particular, we use such a measure to assess the propensity of a graph to
synchronize explosively, thus indicating a unified framework for most of the
different models proposed so far for such an irreversible transition. Taking
advantage of the predicting power of this measure, we furthermore discuss a
strategy to induce the explosive behavior in a generic network, by acting only
upon a small fraction of its nodes
PKI Interoperability: Still an Issue? A Solution in the X. 509 Realm
There exist many obstacles that slow the global adoption of public key infrastructure (PKI) technology. The PKI interoperability problem, being poorly understood, is one of the most confusing. In this paper, we clarify the PKI interoperability issue by exploring both the juridical and technical domains. We demonstrate the origin of the PKI interoperability problem by determining its root causes, the latter being legal, organizational and technical differences between countries, which mean that relying parties have no one to rely on. We explain how difficult it is to harmonize them. Finally, we propose to handle the interoperability problem from the trust management point of view, by introducing the role of a trust broker which is in charge of helping relying parties make informed decisions about X.509 certificates
Topological Measure Locating the Effective Crossover between Segregation and Integration in a Modular Network
We introduce an easily computable topological measure which locates the
effective crossover between segregation and integration in a modular network.
Segregation corresponds to the degree of network modularity, while integration
is expressed in terms of the algebraic connectivity of an associated
hyper-graph. The rigorous treatment of the simplified case of cliques of equal
size that are gradually rewired until they become completely merged, allows us
to show that this topological crossover can be made to coincide with a
dynamical crossover from cluster to global synchronization of a system of
coupled phase oscillators. The dynamical crossover is signaled by a peak in the
product of the measures of intra-cluster and global synchronization, which we
propose as a dynamical measure of complexity. This quantity is much easier to
compute than the entropy (of the average frequencies of the oscillators), and
displays a behavior which closely mimics that of the dynamical complexity index
based on the latter. The proposed toplogical measure simultaneously provides
information on the dynamical behavior, sheds light on the interplay between
modularity vs total integration and shows how this affects the capability of
the network to perform both local and distributed dynamical tasks
Synchronization interfaces and overlapping communities in complex networks
We show that a complex network of phase oscillators may display interfaces
between domains (clusters) of synchronized oscillations. The emergence and
dynamics of these interfaces are studied in the general framework of
interacting phase oscillators composed of either dynamical domains (influenced
by different forcing processes), or structural domains (modular networks). The
obtained results allow to give a functional definition of overlapping
structures in modular networks, and suggest a practical method to identify
them. As a result, our algorithm could detect information on both single
overlapping nodes and overlapping clusters.Comment: 5 pages, 4 figure
- …