14 research outputs found

    Effect of Piezoelectric Polarization on Phonon group velocity in Wurtzite Nitrides

    Full text link
    We have investigated the effect of piezoelectric (PZ) polarization property on group velocity of phonons in binary as well as in ternary wurtzite nitrides. It is found that with the presence of PZ polarization property, the phonon group velocity is modified. The change in phonon group velocity due to PZ polarization effect directly depends on piezoelectric tensor value. Using different piezoelectric tensor values recommended by different workers in the literature, percent change in group velocities of phonons has been estimated. The Debye temperatures and frequencies of binary nitrides GaN, AlN and InN are also calculated using the modified group velocities. For ternary nitrides AlxGa(1-x)N, InxGa(1-x)N and InxAl(1-x)N, the phonon group velocities have been calculated as a functions of composition. A small positive bowing is observed in phonon group velocities of ternary alloys. Percent variations in phonon group velocities are also calculated for a straightforward comparison among ternary nitrides. The results are expected to show a change in phonon relaxation rates and thermal conductivity of III-nitrides when piezoelectric polarization property is taken into account.Comment: 05 figures; Journal of Material science, 201

    Michelson interferometer for the piezoelectric coefficient measurements

    No full text
    The present work has described the Michelson interferometer which is capable of measuring the vibrational amplitudes in a sub-angstrom range. In the system, a He-Ne laser is used as a monochromatic source of light and a photodiode as a detector to convert an optical signal into an electronic one. Lock-in detections of the electronic signals are applied to relate the vibrational amplitudes to the wavelength of the laser beam. A feedback circuit is introduced in order to stabilize the sensitivity of the interferometric system. With this setup, a mechanical displacement referred to a change in thickness of a vibrating sample can be measured and the corresponding piezoelectric coefficient, i.e. the ratio of the change in sample thickness to the applied voltage, evaluated. In order to check the performance of the system, measurements on lithium niobate (LiNbO3) have been made and its piezoelectric coefficient d33 was confirmed with 2% accuracy. The piezoelectric coefficient d33 for lead zirconate titanate (PZT) ceramics was, therefore, determined by this interferometer and found to be 270 pm/V

    Determination of piezoelectric and pyroelectric coefficients and thermal diffusivity of 1-3 PZT/epoxy composites

    No full text
    PZT/epoxy composites with 1-3 connectivity were prepared using the dice-and-fill technique. The samples were poled with an electric field of 10 MV/m for 30 minutes at room temperature. The piezoelectric and pyroelectric coefficients for the composites were measured. From the laser interferometric measurements, it was found that the piezoelectric d33 coefficients for the composites were independent of the volume fraction and averaged (190 + 10) pm/V, which was about half of the measured value of lead zirconate titanate (PZT) ceramic. Measurements of the pyroelectric coefficient showed that the coefficients increased with the ceramic content and reached values as large as 54 μC/m2°C. The thermal diffusivity of the composites was also determined using a technique based on the measurement of the phase retardation of a thermal wave passing through the material. The average value for the composites was (2.15 ± 0.05) x 10-7 m2/s.6 page(s

    AlN: piezoelectric constants

    No full text

    GaN: piezoelectric constants

    No full text
    corecore