557 research outputs found
Shape memory nanocomposite of poly(L-lactic acid)/graphene nanoplatelets triggered by infrared light and thermal heating
In this study, the effect of graphene nanoplatelets (GNPs) on the shape memory properties of poly(L-lactic acid) (PLLA) was studied. In addition to thermal activation, the possibility of infrared actuating of thermo-responsive shape memory PLLA/GNPs nanocomposite was investigated. The incorporated GNPs were expected to absorb infrared wave’s energy and activate shape memory PLLA/GNPs. Different techniques such as differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), field emission gun scanning electron microscope (FEG-SEM) and dynamic mechanical thermal analysis (DMTA) were used to characterize samples. DSC and WAXD results indicated that GNPs augmented crystallinity due to nucleating effect of graphene particles. GNPs improved both thermal and infrared activating shape memory properties along with faster response. Pure shape memory PLLA was slightly responsive to infrared light and its infrared actuated shape recovery ratio was 86% which increased to more than 95% with loading of GNPs. Drastic improvement in the crystallinity was obtained in nanocomposites with lower GNPs contents (0.5 and 1 wt%) due to finer dispersion of graphene which resulted in more prominent mechanical and shape memory properties enhancement. Infrared activated shape memory PLLA/GNPs nanocomposites can be developed for wireless remote shape control of smart medical and bio-systems
Stress-Free Two-Way Shape Memory Effect of Poly(ethylene glycol)/ Poly(epsilon-caprolactone) Semicrystalline Networks
In this work, poly(ethylene glycol) (PEG)/poly(epsilon- caprolactone) (PCL) semicrystalline networks were prepared by photo-cross-linking of methacrylated macromonomers with different molecular weights and in different proportions to obtain amphiphilic materials capable of displaying properly designed shape memory effects. Networks based on PCL 10 kDa and PEG 3 kDa showed suitable thermal and mechanical properties with well-separated crystallization and melting regions to achieve a self-standing two-way shape memory effect. Particularly, after the application of a specific thermomechanical history, these materials are capable of cyclically changing their shape between two configurations upon cooling-heating cycles in the absence of any external load applied. The effect of the composition of the networks and of the employed thermomechanical parameters, such as the applied strain and the actuation temperature, was investigated to shed light on the shape memory mechanism for this class of materials, which are considered promising for applications in the biomedical field and as reversible actuators for soft robotics
Survival in patients with intermediate or high grade non-Hodgkin's lymphoma: meta-analysis of randomized studies comparing third generation regimens with CHOP
In patients with intermediate or high grade non-Hodgkin lymphoma (NHL), third generation chemotherapy regimens have been introduced to improve survival in comparison with the standard CHOP regimen. However, most studies have found no difference between these two treatments. We conducted a meta-analysis to assess the effectiveness of third generation regimens as compared with CHOP. Our study included the randomized controlled trials published in English from 1970 to 1999. After a Medline search, 5 trials were found to meet our inclusion criteria. A total of 1982 patients, that were enrolled in these trials, were included in the survival meta-analysis. Our methodology retrieved patient-level information from all of these subjects; survival up to 9 years after randomization was compared between the two treatment options. The results of our meta-analysis showed that, in comparison with CHOP, third generation chemotherapy did not prolong survival at levels of statistical significance (chi-square by log-rank test = 1.44, P = 0.23). The relative death risk for third generation regimens vs. CHOP was 0.92 (95%CI: 0.80 to 1.06;P  = 0.26). We conclude that, on the basis of our meta-analysis, third generation regimens do not confer any survival benefit to patients with intermediate or high grade NHL as compared with CHOP. © 2001 Cancer Research Campaign http://www.bjcancer.co
Parental evaluation of a telemonitoring service for children with Type 1 Diabetes
Introduction In the past years, we developed a telemonitoring service for young patients affected by Type 1 Diabetes. That service provides data to the clinical staff and offers an important tool to the parents, that are able to oversee in real time their children. The aim of this work was to analyze the parents' perceived usefulness of the service. Methods The service was tested by the parents of 31 children enrolled in a seven-day clinical trial during a summer camp. To study the parents' perception we proposed and analyzed two questionnaires. A baseline questionnaire focused on the daily management and implications of their children's diabetes, while a post-study one measured the perceived benefits of telemonitoring. Questionnaires also included free text comment spaces. Results Analysis of the baseline questionnaires underlined the parents' suffering and fatigue: 51% of total responses showed a negative tendency and the mean value of the perceived quality of life was 64.13 in a 0-100 scale. In the post-study questionnaires about half of the parents believed in a possible improvement adopting telemonitoring. Moreover, the foreseen improvement in quality of life was significant, increasing from 64.13 to 78.39 ( p-value\u2009=\u20090.0001). The analysis of free text comments highlighted an improvement in mood, and parents' commitment was also proved by their willingness to pay for the service (median\u2009=\u2009200\u2009euro/year). Discussion A high number of parents appreciated the telemonitoring service and were confident that it could improve communication with physicians as well as the family's own peace of mind
Mid-Holocene climate at mid-latitudes: assessing the impact of Saharan greening
During the first half of the Holocene (11 000 to 5000 years ago), the Northern Hemisphere experienced a strengthening of the monsoonal regime, with climate reconstructions robustly suggesting a greening of the Sahara region. Palaeoclimate archives also show that this so-called African humid period (AHP) was accompanied by changes in climate conditions at middle to high latitudes. However, inconsistencies still exist in reconstructions of the mid-Holocene (MH) climate at mid-latitudes, and model simulations provide limited support in reducing these discrepancies. In this paper, a set of simulations performed using a climate model are used to investigate the hitherto unexplored impact of Saharan greening on mid-latitude atmospheric circulation during the MH. Numerical simulations show Saharan greening has a year-round impact on the main circulation features in the Northern Hemisphere, especially during boreal summer (when the African monsoon develops). Key findings include a westward shift in the global Walker Circulation, leading to modifications in the North Atlantic jet stream in summer and the North Pacific jet stream in winter. Furthermore, Saharan greening modifies atmospheric synoptic circulation over the North Atlantic, enhancing the effect of orbital forcing on the transition of the North Atlantic Oscillation phase from predominantly positive to negative in winter and summer. Although the prescription of vegetation in the Sahara does not improve the proxy–model agreement, this study provides the first constraint on the influence of Saharan greening on northern mid-latitudes, opening new opportunities for understanding MH climate anomalies in regions such as North America and Eurasia.</p
Reversible Stress-Driven and Stress-Free Two-Way Shape Memory Effect in a Sol-Gel Crosslinked Polycaprolactone
The two-way shape memory effect is the ability of a material to change its shape between two configurations upon application and removal of a stimulus, and, among shape memory polymers, it is featured only by few systems, such as semicrystalline networks. When studied under tensile conditions, it consists of elongation-contraction cycles along cooling and heating across the crystallization and melting region, typically under the application of a constant load. However, recent studies on crosslinked semicrystalline co-polymers demonstrate that also a completely stress-free, or self-sustained, two-way effect may be achieved through specific thermomechanical cycles. This effect is currently regarded with interest for the development of intrinsically reversible sensors and actuators, and it may also be displayed by simpler materials, as homopolymer-based semicrystalline networks. Only seldom articles investigate this possibility, therefore in this work the two-way shape memory behavior is studied on a poly(e-caprolactone) system, crosslinked by means of a sol-gel approach. The effect is studied both under stress-driven and stress-free condition, by applying properly set-up thermo-mechanical histories. The results allow to describe the effect as a function of temperature, to reveal the dependence on specific testing parameters and to compare the extent of the reversible strain variation under these two conditions
A preliminary investigation on the mechanical behaviour of a stiff Italian clay in the context of hydrogen storage
The large-scale use of renewable energy sources is closely linked to the ability to store excess energy generated
during periods of overproduction for use when demand is at a peak. Storing green energy is therefore a key
component in the move towards a carbon-neutral economy. Underground hydrogen storage in depleted oil and
gas reservoirs may provide an efficient long-term solution. Cyclic injection and production of hydrogen alter the
chemo-hydro-mechanical conditions of the reservoir and caprocks, and possible geomechanical consequences of
such alterations must be preliminarily assessed for safe storage operations. This study aims at exploring the
possible effects of cyclic mechanical loads, such as those that might be induced by hydrogen storage and production, on the mechanical behaviour of a clayey caprock. A series of triaxial tests, both monotonic and cyclic,
were carried out on undisturbed samples of a stiff Italian clay cored from a caprock formation overlying a hydrocarbon reservoir. The results show that the material response is characterized by the distinctive stress-strain
behaviour of stiff clays, with a rather high fragility, which was found to be highly dependent on the loading
strain rate. During laboratory experiments conducted at frequencies larger than in situ ones, cyclic loading under
stress control causes a gradual degradation of the material structure leading to the formation of a clear shear
band followed by a reduction in shear strength. Eventually, failure occurs as the peak shear strength approaches
the applied load. The progressive destructuration also implies a reduction in P- and S-wave propagation velocities and a significant change in the signal shape, which is therefore a promising parameter for monitoring the
material degradation process
Maternal antibiotic treatment affects offspring gastric sensing for umami taste and ghrelin regulation in the pig
Background: Scarce is knowledge on the process regulating the development of acid secretion, orexigenic signaling, and chemosensing in the stomach of young pigs. Changes of early microbial encounters by suckling pigs can interact with the gut maturation, by the induction of different molecular signaling. Our goal was to assess if the age of offspring and the maternal environment, influenced by sow antibiotic treatment peripartum, could affect gastric morphology and the expression of genes involved in the control of hydrochloric secretion, feed intake, taste, and inflammation in offspring stomach. Methods: 84 pigs from sows fed a diet with amoxicillin (on –d10 to +d21 from farrowing, ANT) or without (CON) were sacrificed at d14, d21, d28 (weaning) or d42. Samples of oxyntic (OXY), pyloric (PY) and cardiac mucosae close to OXY were collected and parietal and enteroendocrine cells (EECs) were counted. Relative gene expression of a set of 11 key genes (ATP4A, SSTR2, GAST, GHRL, MBOAT4, PCSK1, GNAT1, TAS1R1, TAS1R3, IL8 and TNF) was assessed by qRT-PCR. In addition, 40 offspring obtained from the same ANT and CON sows were offered a normal or a fat-enriched diet for 4 weeks between 140 and 169 d of age, and then OXY and PY were sampled. Results: The number of parietal and EECs increased with age (P < 0.001). ATP4A increased with age (within suckling, P = 0.043, post-weaning vs. suckling, P < 0.001), SSTR2 increased only after weaning (P < 0.001). In OXY, GHRL increased during suckling (P = 0.012), and post-weaning as a trend (P = 0.088). MBOAT4 tended to increase during suckling (P = 0.062). TAS1R1 increased from suckling to post-weaning period (P =0.001) and was lower in ANT offspring (P = 0.013). GNAT1 in PY was higher in ANT offspring (P = 0.041). Antibiotic treatment of sows peripartum increased expression of GHRL and MBOAT4 in OXY of growing-finishing offspring aged 5 months. Conclusions: Data show that sensing for umami taste and ghrelin regulation can be affected by maternal environment, but the development of acid secretion, orexigenic signaling and taste perception in the stomach are mostly developmentally controlled
Recommended from our members
The remote response of the South Asian Monsoon to reduced dust emissions and Sahara greening during the middle Holocene
Previous studies based on multiple paleoclimate archives suggested a prominent intensification of the South Asian Monsoon (SAM) during the mid-Holocene (MH, similar to 6000 years before present). The main forcing that contributed to this intensification is related to changes in the Earth's orbital parameters. Nonetheless, other key factors likely played important roles, including remote changes in vegetation cover and airborne dust emission. In particular, northern Africa also experienced much wetter conditions and a more mesic landscape than today during the MH (the so-called African Humid Period), leading to a large decrease in airborne dust globally. However, most modeling studies investigating the SAM changes during the Holocene overlooked the potential impacts of the vegetation and dust emission changes that took place over northern Africa. Here, we use a set of simulations for the MH climate, in which vegetation over the Sahara and reduced dust concentrations are considered. Our results show that SAM rainfall is strongly affected by Saharan vegetation and dust concentrations, with a large increase in particular over northwestern India and a lengthening of the monsoon season. We propose that this re- mote influence is mediated by anomalies in Indian Ocean sea surface temperatures and may have shaped the evolution of the SAM during the termination of the African Humid Period
- …