1,193 research outputs found

    Variation of the Diameter of the Sun as Measured by the Solar Disk Sextant (SDS)

    Full text link
    The balloon-borne Solar Disk Sextant (SDS) experiment has measured the angular size of the Sun on seven occasions spanning the years 1992 to 2011. The solar half-diameter -- observed in a 100-nm wide passband centred at 615 nm -- is found to vary over that period by up to 200 mas, while the typical estimated uncertainty of each measure is 20 mas. The diameter variation is not in phase with the solar activity cycle; thus, the measured diameter variation cannot be explained as an observational artefact of surface activity. Other possible instrument-related explanations for the observed variation are considered but found unlikely, leading us to conclude that the variation is real. The SDS is described here in detail, as is the complete analysis procedure necessary to calibrate the instrument and allow comparison of diameter measures across decades.Comment: 41 pages; appendix and 2 figures added plus some changes in text based on referee's comments; to appear in MNRA

    The LOX-1 Scavenger Receptor and Its Implications in the Treatment of Vascular Disease

    Get PDF
    Cardiovascular disease is the leading cause of death. The disease is due to atherosclerosis which is characterized by lipid and fat accumulation in arterial blood vessel walls. A key causative event is the accumulation of oxidised low density lipoprotein particles within vascular cells, and this is mediated by scavenger receptors. One such molecule is the LOX-1 scavenger receptor that is expressed on endothelial, vascular smooth muscle, and lymphoid cells including macrophages. LOX-1 interaction with OxLDL particles stimulates atherosclerosis. LOX-1 mediates OxLDL endocytosis via a clathrin-independent internalization pathway. Transgenic animal model studies show that LOX-1 plays a significant role in atherosclerotic plaque initiation and progression. Administration of LOX-1 antibodies in cellular and animal models suggest that such intervention inhibits atherosclerosis. Antiatherogenic strategies that target LOX-1 function using gene therapy or small molecule inhibitors would be new ways to address the increasing incidence of vascular disease in many countries

    Introduction

    Get PDF

    Interference with the germination and growth of Ulvazoospores by quorum-sensing molecules from Ulva-associated epiphytic bacteria

    Get PDF
    Ulva zoospores preferentially settle on N-acylhomoserine lactone (AHL) producing marine bacterial biofilms. To investigate whether AHL signal molecules also affect the success and rate of zoospore germination in addition to zoospore attraction, the epiphytic bacteria associated with mature Ulva linza were characterized and bacterial isolates representative of this community tested for the ability to produce AHLs. Two of these AHL-producing isolates, Sulfitobacter spp. 376 and Shewanella spp. 79, were transformed with plasmids expressing the Bacillus spp. AHL lactonase gene aiiA to generate AHL-deficient variants. The germination and growth of U. linza zoospores was studied in the presence of these AHL-deficient strains and their AHL-producing counterparts. This revealed that the AHLs produced by Sulfitobacter spp. and Shewanella spp. or the bacterial products they regulate have a negative impact on both zoospore germination and the early growth of the Ulva germling. Further experiments with Escherichia coli biofilms expressing recombinant AHL synthases and synthetic AHLs provide data to demonstrate that zoospores germinated and grown in the absence of AHLs were significantly longer than those germinated in the presence of AHLs. These results reveal an additional role for AHLs per se in the interactive relationships between marine bacteria and Ulva zoospores

    Uncovering the Disconnect Between Nursing Workforce Policy Intentions, Implementation, and Outcomes: Lessons Learned From the Addition of a Nursing Assistant Role

    Full text link
    © The Author(s) 2019. The use of nursing assistants has increased across health systems in the past 20 years, to alleviate licensed nurses' workload and to meet rising health care demands at lower costs. Evidence suggests that, when used as a substitute for licensed nurses, assistants are associated with poorer patient and nurse outcomes. Our multimethods study evaluated the impact of a policy to add nursing assistants to existing nurse staffing in Western Australia's public hospitals, on a range of outcomes. In this article, we draw the metainferences from previously published quantitative data and unpublished qualitative interview data. A longitudinal analysis of patient records found significantly higher rates adverse patient outcomes on wards that introduced nursing assistants compared with wards that did not. These findings are explained with ward-level data that show nursing assistants were added to wards with preexisting workload and staffing problems and that those problems persisted despite the additional resources. There were also problems integrating assistants into the nursing team, due to ad hoc role assignments and variability in assistants' knowledge and skills. The disconnect between policy intention and outcomes reflects a top-down approach to role implementation where assistants were presented as a solution to nurses' workload problems, without an understanding of the causes of those problems. We conclude that policy makers and managers must better understand individual care environments to ensure any new roles are properly tailored to patient and staff needs. Further, standardized training and accreditation for nursing assistant roles would reduce the supervisory burden on licensed nurses

    Application performance of elements in a floating–gate FPAA

    Get PDF
    Field–programmable analog arrays (FPAAs) provide a method for rapidly prototyping analog systems. Currently available commercial and academic FPAAs are typically based on operational amplifiers (or other similar analog primitives) with only a few computational elements per chip. While their specific architectures vary, their small sizes and often restrictive interconnect designs leave current FPAAs limited in functionality, flexibility, and usefulness. In this paper, we explore the use of floating–gate devices as the core programmable element in a signal processing FPAA. A generic FPAA architecture is presented that offers increased functionality and flexibility in realizing analog systems. In addition, the computational analog elements are shown to be widely and accurately programmable while remaining small in area. 1. LOW–POWER SIGNAL PROCESSING The future of FPAAs lie in their ability to speed the implementatio

    Developing large-scale field-programmable analog arrays for rapid prototyping

    Get PDF
    Field-programmable analog arrays (FPAAs) provide a method for rapidly prototyping analog systems. While currently available FPAAs vary in architecture and interconnect design, they are often limited in size and flexibility. For FPAAs to be as useful and marketable as modern digital reconfigurable devices, new technologies must be explored to provide area efficient, accurately programmable analog circuitry that can be easily integrated into a larger digital/mixed signal system. By leveraging recent advances in floating gate transistors, a new generation of FPAAs are achievable that will dramatically advance the current state of the art in terms of size, functionality, and flexibility

    Deployable-erectable trade study for space station truss structures

    Get PDF
    The results of a trade study on truss structures for constructing the space station are presented. Although this study was conducted for the reference gravity gradient space station, the results are generally applicable to other configurations. The four truss approaches for constructing the space station considered in this paper were the 9 foot single fold deployable, the 15 foot erectable, the 10 foot double fold tetrahedral, and the 15 foot PACTRUSS. The primary rational for considering a 9 foot single-fold deployable truss (9 foot is the largest uncollapsed cross-section that will fit in the Shuttle cargo bay) is that of ease of initial on-orbit construction and preintegration of utility lines and subsystems. The primary rational for considering the 15 foot erectable truss is that the truss bay size will accommodate Shuttle size payloads and growth of the initial station in any dimension is a simple extension of the initial construction process. The primary rational for considering the double-fold 10 foot tetrahedral truss is that a relatively large amount of truss structure can be deployed from a single Shuttle flight to provide a large number of nodal attachments which present a pegboard for attaching a wide variety of payloads. The 15 foot double-fold PACTRUSS was developed to incorporate the best features of the erectable truss and the tetrahedral truss

    A Versatile, Portable Intravital Microscopy Platform for Studying Beta-cell Biology In Vivo

    Get PDF
    The pancreatic islet is a complex micro-organ containing numerous cell types, including endocrine, immune, and endothelial cells. The communication of these systems is lost upon isolation of the islets, and therefore the pathogenesis of diabetes can only be fully understood by studying this organized, multicellular environment in vivo. We have developed several adaptable tools to create a versatile platform to interrogate β-cell function in vivo. Specifically, we developed β-cell-selective virally-encoded fluorescent protein biosensors that can be rapidly and easily introduced into any mouse. We then coupled the use of these biosensors with intravital microscopy, a powerful tool that can be used to collect cellular and subcellular data from living tissues. Together, these approaches allowed the observation of in vivo β-cell-specific ROS dynamics using the Grx1-roGFP2 biosensor and calcium signaling using the GcAMP6s biosensor. Next, we utilized abdominal imaging windows (AIW) to extend our in vivo observations beyond single-point terminal measurements to collect longitudinal physiological and biosensor data through repeated imaging of the same mice over time. This platform represents a significant advancement in our ability to study β-cell structure and signaling in vivo, and its portability for use in virtually any mouse model will enable meaningful studies of β-cell physiology in the endogenous islet niche

    The Use of unregulated staff: Time for regulation?

    Get PDF
    Internationally, shortages in the nursing workforce, escalating patient demands, and financial constraints within the health system have led to the growth of unlicensed nursing support workers. Recently, in relation to the largest publicly funded health system (National Health Service), it was reported that extensive substitution of registered nurses with unskilled nursing support workers resulted in inadequate patient care, increased morbidity and mortality rates, and negative nurse outcomes. We argue that it is timely to consider regulation of nursing support workers with their role and scope of practice clearly defined. Further, the addition of these workers in a complementary model of care (rather than substitutive model) should also be explored in future research, in terms of impact on patient and nurse outcomes
    corecore