71 research outputs found

    Main Belt Asteroids with WISE/NEOWISE: Near-Infrared Albedos

    Get PDF
    We present revised near-infrared albedo fits of 2835 Main Belt asteroids observed by WISE/NEOWISE over the course of its fully cryogenic survey in 2010. These fits are derived from reflected-light near-infrared images taken simultaneously with thermal emission measurements, allowing for more accurate measurements of the near-infrared albedos than is possible for visible albedo measurements. As our sample requires reflected light measurements, it undersamples small, low albedo asteroids, as well as those with blue spectral slopes across the wavelengths investigated. We find that the Main Belt separates into three distinct groups of 6%, 16%, and 40% reflectance at 3.4 um. Conversely, the 4.6 um albedo distribution spans the full range of possible values with no clear grouping. Asteroid families show a narrow distribution of 3.4 um albedos within each family that map to one of the three observed groupings, with the (221) Eos family being the sole family associated with the 16% reflectance 3.4 um albedo group. We show that near-infrared albedos derived from simultaneous thermal emission and reflected light measurements are an important indicator of asteroid taxonomy and can identify interesting targets for spectroscopic followup.Comment: Accepted for publication in ApJ; full version of Table1 to be published electronically in the journa

    Asteroid Diameters and Albedos from NEOWISE Reactivation Mission Years 4 and 5

    Get PDF
    The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) spacecraft has been conducting a two-band thermal infrared survey to detect and characterize asteroids and comets since its reactivation in 2013 December. Using the observations collected during the fourth and fifth years of the survey, our automated pipeline detected candidate moving objects that were verified and reported to the Minor Planet Center. Using these detections, we perform thermal modeling of each object from the near-Earth object (NEO) and Main Belt asteroid (MBA) populations to constrain their sizes. We present thermal model fits of asteroid diameters for 189 NEOs and 5831 MBAs detected during the fourth year of the survey, and 185 NEOs and 5776 MBAs from the fifth year. To date, the NEOWISE Reactivation survey has provided thermal model characterization for 957 unique NEOs. Including all phases of the original Wide-field Infrared Survey Explorer survey brings the total to 1473 unique NEOs that have been characterized between 2010 and the present

    NEOWISE Reactivation Mission Year Three: Asteroid Diameters and Albedos

    Get PDF
    The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) reactivation mission has completed its third year of surveying the sky in the thermal infrared for near-Earth asteroids and comets. NEOWISE collects simultaneous observations at 3.4 um and 4.6 um of solar system objects passing through its field of regard. These data allow for the determination of total thermal emission from bodies in the inner solar system, and thus the sizes of these objects. In this paper we present thermal model fits of asteroid diameters for 170 NEOs and 6110 MBAs detected during the third year of the survey, as well as the associated optical geometric albedos. We compare our results with previous thermal model results from NEOWISE for overlapping sample sets, as well as diameters determined through other independent methods, and find that our diameter measurements for NEOs agree to within 26% (1-sigma) of previously measured values. Diameters for the MBAs are within 17% (1-sigma). This brings the total number of unique near-Earth objects characterized by the NEOWISE survey to 541, surpassing the number observed during the fully cryogenic mission in 2010.Comment: Accepted for publication in A

    NEOWISE Reactivation Mission Year One: Preliminary Asteroid Diameters and Albedos

    Get PDF
    We present preliminary diameters and albedos for 7,959 asteroids detected in the first year of the NEOWISE Reactivation mission. 201 are near-Earth asteroids (NEAs). 7,758 are Main Belt or Mars-crossing asteroids. 17% of these objects have not been previously characterized using WISE or NEOWISE thermal measurements. Diameters are determined to an accuracy of ~20% or better. If good-quality H magnitudes are available, albedos can be determined to within ~40% or better.Comment: 42 pages, 5 figure

    Asteroid Diameters and Albedos from NEOWISE Reactivation Mission Years Four and Five

    Get PDF
    The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) spacecraft has been conducting a two-band thermal infrared survey to detect and characterize asteroids and comets since its reactivation in Dec 2013. Using the observations collected during the fourth and fifth years of the survey, our automated pipeline detected candidate moving objects which were verified and reported to the Minor Planet Center. Using these detections, we perform thermal modeling of each object from the near-Earth object and Main Belt asteroid populations to constrain their sizes. We present thermal model fits of asteroid diameters for 189 NEOs and 5831 MBAs detected during the fourth year of the survey, and 185 NEOs and 5776 MBAs from the fifth year. To date, the NEOWISE Reactivation survey has provided thermal model characterization for 957 unique NEOs. Including all phases of the original WISE survey brings the total to 1473 unique NEOs that have been characterized between 2010 and the present.Comment: Accepted for publication in the AAS Planetary Science Journa

    Discovery of Two T Dwarf Companions with the Spitzer Space Telescope

    Get PDF
    We report the discovery of T dwarf companions to the nearby stars HN Peg (G0V, 18.4 pc, ~0.3 Gyr) and HD 3651 (K0V, 11.1 pc, ~7 Gyr). During an ongoing survey of 5'x5' fields surrounding stars in the solar neighborhood with IRAC aboard the Spitzer Space Telescope, we identified these companions as candidate T dwarfs based on their mid-IR colors. Using near-IR spectra obtained with SpeX at the NASA IRTF, we confirm the presence of methane absorption that characterizes T dwarfs and measure spectral types of T2.5+/-0.5 and T7.5+/-0.5 for HN Peg B and HD 3651 B, respectively. By comparing our Spitzer data to images from 2MASS obtained several years earlier, we find that the proper motions of HN Peg B and HD 3651 B are consistent with those of the primaries, confirming their companionship. HN Peg B and HD 3651 B have angular separations of 43.2" and 42.9" from their primaries, which correspond to projected physical separations of 795 and 476 AU, respectively. A comparison of their luminosities to the values predicted by theoretical evolutionary models implies masses of 0.021+/-0.009 and 0.051+/-0.014 Msun for HN Peg B and HD 3651 B. In addition, the models imply an effective temperature for HN Peg B that is significantly lower than the values derived for other T dwarfs at similar spectral types, which is the same behavior reported by Metchev & Hillenbrand for the young late-L dwarf HD 203030 B. Thus, the temperature of the L/T transition appears to depend on surface gravity. Meanwhile, HD 3651 B is the first substellar companion directly imaged around a star that is known to harbor a close-in planet from RV surveys. The discovery of this companion supports the notion that the high eccentricities of close-in planets like the one near HD 3651 may be the result of perturbations by low-mass companions at wide separations.Comment: Astrophysical Journal, in pres

    Asteroid Diameters and Albedos from NEOWISE Reactivation Mission Years Four and Five

    Get PDF
    The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) spacecraft has been conducting a two-band thermal infrared survey to detect and characterize asteroids and comets since its reactivation in Dec 2013. Using the observations collected during the fourth and fifth years of the survey, our automated pipeline detected candidate moving objects which were verified and reported to the Minor Planet Center. Using these detections, we perform thermal modeling of each object from the near-Earth object and Main Belt asteroid populations to constrain their sizes. We present thermal model fits of asteroid diameters for 189 NEOs and 5831 MBAs detected during the fourth year of the survey, and 185 NEOs and 5776 MBAs from the fifth year. To date, the NEOWISE Reactivation survey has provided thermal model characterization for 957 unique NEOs. Including all phases of the original WISE survey brings the total to 1473 unique NEOs that have been characterized between 2010 and the present

    Asteroid Diameters and Albedos from NEOWISE Reactivation Mission Years 4 and 5

    Get PDF
    The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) spacecraft has been conducting a two-band thermal infrared survey to detect and characterize asteroids and comets since its reactivation in 2013 December. Using the observations collected during the fourth and fifth years of the survey, our automated pipeline detected candidate moving objects that were verified and reported to the Minor Planet Center. Using these detections, we perform thermal modeling of each object from the near-Earth object (NEO) and Main Belt asteroid (MBA) populations to constrain their sizes. We present thermal model fits of asteroid diameters for 189 NEOs and 5831 MBAs detected during the fourth year of the survey, and 185 NEOs and 5776 MBAs from the fifth year. To date, the NEOWISE Reactivation survey has provided thermal model characterization for 957 unique NEOs. Including all phases of the original Wide-field Infrared Survey Explorer survey brings the total to 1473 unique NEOs that have been characterized between 2010 and the present
    corecore