2,221 research outputs found

    Fibre Reinforced Geopolymers as Inorganic Strengthening Composites for Masonry Structures

    Get PDF
    The study presents an assessment of externally bonded Fibre-Reinforced GeoPolymers (FRGPs) as strengthening material for masonry structures. Thanks to their tailored chemical and mechanical characteristics, geopolymer matrices can fulfil the restoration criteria for Built Heritage (BH) with the benefit of heat-resistant performances better than those of organic and inorganic matrices used in Externally Bonded Fibre Reinforced Polymers (EB-FRP) and Fabric-Reinforced Cementitious Matrix (FRCM) materials, respectively. This work is built on the outcomes of a previous investigation that proved the suitability of the developed geopolymer matrix for applications on clay bricks, revealing a good adhesion to masonry substrates and to embedded reinforcements. The behaviour of three FRGPs, including either a bi-directional basalt mesh, a bi-directional carbon mesh or a unidirectional Ultra High Strength Steel (UHSS) fabric, was explored by means of local tests on masonry sub-assemblages made of soft-mud clay bricks and hydraulic lime mortar. In overall, 9 single-lap shear tests on single bricks with a bonded length of 200 mm and 9 three-point bending tests on 2-brick slices, connected by a mortar joint and reinforced at the bottom face, were carried out. Lastly, the behaviour in alkaline environments of each reinforcement was investigated through tensile tests on coupons immersed for 28 days in alkaline solutions simulating the conditions of the geopolimeric matrices. Results confirmed the interesting potential of FRGPs for strengthening masonry elements, highlighting a good performance of steel and carbon reinforcements. On the other hand, precautions should be taken with basalt meshes that, as expected, were more sensitive to alkaline environment

    Ergodicity breaking in strong and network-forming glassy system

    Full text link
    The temperature dependence of the non-ergodicity factor of vitreous GeO2_2, fq(T)f_{q}(T), as deduced from elastic and quasi-elastic neutron scattering experiments, is analyzed. The data are collected in a wide range of temperatures from the glassy phase, up to the glass transition temperature, and well above into the undercooled liquid state. Notwithstanding the investigated system is classified as prototype of strong glass, it is found that the temperature- and the qq-behavior of fq(T)f_{q}(T) follow some of the predictions of Mode Coupling Theory. The experimental data support the hypothesis of the existence of an ergodic to non-ergodic transition occurring also in network forming glassy systems

    Dynamics of the peripheral membrane protein P2 from human myelin measured by neutron scattering - a comparison between wild-type protein and a hinge mutant

    No full text
    Myelin protein P2 is a fatty acid-binding structural component of the myelin sheath in the peripheral nervous system, and its function is related to its membrane binding capacity. Here, the link between P2 protein dynamics and structure and function was studied using elastic incoherent neutron scattering (EINS). The P38G mutation, at the hinge between the ÎČ barrel and the α-helical lid, increased the lipid stacking capacity of human P2 in vitro, and the mutated protein was also functional in cultured cells. The P38G mutation did not change the overall structure of the protein. For a deeper insight into P2 structure-function relationships, information on protein dynamics in the 10 ps to 1 ns time scale was obtained using EINS. Values of mean square displacements mainly from protein H atoms were extracted for wild-type P2 and the P38G mutant and compared. Our results show that at physiological temperatures, the P38G mutant is more dynamic than the wild-type P2 protein, especially on a slow 1-ns time scale. Molecular dynamics simulations confirmed the enhanced dynamics of the mutant variant, especially within the portal region in the presence of bound fatty acid. The increased softness of the hinge mutant of human myelin P2 protein is likely related to an enhanced flexibility of the portal region of this fatty acid-binding protein, as well as to its interactions with the lipid bilayer surface requiring conformational adaptations

    Ground state of excitons and charged excitons in a quantum well

    Get PDF
    A variational calculation of the ground state of a neutral exciton and of positively and negatively charged excitons (trions) in single quantum well is presented. We study the dependance of the correlation energy and of the binding energy on the well width and on the hole mass. Our results are are compared with previous theoretical results and with avalaible experimental data.Comment: 8 pages, 5 figures presented to OECS

    Tsunami potential source in the eastern Sea of Marmara (NW Turkey), along the North Anatolian Fault system

    Get PDF
    Based on morphobathymetric and seismic reflection data, we studied a large landslide body from the eastern Sea of Marmara (NW Turkey), along the main strand of the North Anatolian Fault, one of the most seismically active geological structures on Earth. Due to its location and dimensions, the sliding body may cause tsunamis in case of failure possibly induced by an earthquake. This could affect heavily the coasts of the Sea of Marmara and the densely populated Istanbul Metropolitan area, with its exposed cultural heritage assets. After a geological and geometrical description of the landslide, thanks to high-resolution marine geophysical data, we simulated numerically possible effects of its massive mobilization along a basal displacement surface. Results, within significant uncertainties linked to dimensions and kinematics of the sliding mass, suggest generation of tsunamis exceeding 15–20 m along a broad coastal sector of the eastern Sea of Marmara. Although creeping processes or partial collapse of the landslide body could lower the associated tsunami risk, its detection stresses the need for collecting more marine geological/geophysical data in the region to better constrain hazards and feasibility of specific emergency plans

    The importance of calcium and amorphous silica for arctic soil CO<sub>2</sub> production

    Get PDF
    Future warming of the Arctic not only threatens to destabilize the enormous pool of organic carbon accumulated in permafrost soils but may also mobilize elements such as calcium (Ca) or silicon (Si). While for Greenlandic soils, it was recently shown that both elements may have a strong effect on carbon dioxide (CO2) production with Ca strongly decreasing and Si increasing CO2 production, little is known about the effects of Si and Ca on carbon cycle processes in soils from Siberia, the Canadian Shield, or Alaska. In this study, we incubated five different soils (rich organic soil from the Canadian Shield and from Siberia (one from the top and one from the deeper soil layer) and one acidic and one non-acidic soil from Alaska) for 6 months under both drained and waterlogged conditions and at different Ca and amorphous Si (ASi) concentrations. Our results show a strong decrease in soil CO2 production for all soils under both drained and waterlogged conditions with increasing Ca concentrations. The ASi effect was not clear across the different soils used, with soil CO2 production increasing, decreasing, or not being significantly affected depending on the soil type and if the soils were initially drained or waterlogged. We found no methane production in any of the soils regardless of treatment. Taking into account the predicted change in Si and Ca availability under a future warmer Arctic climate, the associated fertilization effects would imply potentially lower greenhouse gas production from Siberia and slightly increased greenhouse gas emissions from the Canadian Shield. Including Ca as a controlling factor for Arctic soil CO2 production rates may, therefore, reduces uncertainties in modeling future scenarios on how Arctic regions may respond to climate change

    Tumour-derived interleukin 1alpha (IL-1alpha) up-regulates the release of soluble intercellular adhesion molecule-1 (sICAM-1) by endothelial cells.

    Get PDF
    Levels of circulating soluble intercellular adhesion molecule-1 (sICAM-1) are elevated in patients affected by solid malignancies; however, the cellular sources generating high levels of sICAM-1 remain to be characterized. Using conditioned media (CM) from seven ICAM-1-positive or -negative neoplastic cells, we demonstrate that tumour-derived interleukin 1alpha (IL-1alpha) significantly (P < 0.05) up-regulates the release of sICAM-1 by human umbilical vein endothelial cells. The intensity of the effect correlated with the amounts of IL-1alpha detectable in CM. Levels of ICAM-1 mRNA were also up-regulated by tumour-secreted IL-1alpha. The up-regulation of the shedding of sICAM-1 and of its expression at protein and mRNA level were completely reversed by the addition of anti-IL-1alpha neutralizing antibodies. Consistent with the in vitro data, tumour endothelia were strongly stained for ICAM-1 compared with autologous normal tissue endothelia. Taken altogether, our observations reveal an IL-1alpha-mediated tumour-endothelium relationship sustaining the shedding of sICAM-1 by endothelial cells. This is a general phenomenon in solid malignancies that correlates with the ability of neoplastic cells to secrete IL-1alpha rather than with their expression of ICAM-1 and/or histological origin. sICAM-1 has been previously shown to inhibit LFA-1/ICAM-1-mediated cell-cell interactions; therefore, the ability of neoplastic cells to secrete IL-1alpha is likely to represent a mechanism for their escape from immune interaction

    Carbon emissions and radiative forcings from tundra wildfires in the Yukon–Kuskokwim River Delta, Alaska

    Get PDF
    Tundra environments are experiencing elevated levels of wildfire, and the frequency is expected to keep increasing due to rapid climate change in the Arctic. Tundra wildfires can release globally significant amounts of greenhouse gasses that influence the Earth's radiative balance. Here we develop a novel method for estimating carbon loss and the resulting radiative forcings of gaseous and aerosol emissions from the 2015 tundra wildfires in the Yukon–Kuskokwim Delta (YKD), Alaska. We paired burn depth measurements using two vegetative reference points that survived the fire event – Sphagnum fuscum and Dicranum spp. – with measurements of local organic matter and soil carbon properties to estimate total ecosystem organic matter and carbon loss. We used remotely sensed data on fire severity from Landsat 8 to scale our measured losses to the entire fire-affected area, with an estimated total loss of 2.04 Tg of organic matter and 0.91 Tg of carbon and an average loss of 3.76 kg m−2 of organic matter and 1.68 kg m−2 of carbon in the 2015 YKD wildfires. To demonstrate the impact of these fires on the Earth's radiation budget, we developed a simple but comprehensive framework to estimate the radiative forcing from Arctic wildfires. We synthesized existing research on the lifetime and radiative forcings of gaseous and aerosol emissions of CO2, N2O, CH4, O3 and its precursors, and fire aerosols. The model shows a net positive cumulative mean radiative forcing of 3.67 W m−2 using representative concentration pathway (RCP) 4.5 and 3.37 W m−2 using RCP 8.5 at 80 years post-fire, which was dominated by CO2 emissions. Our results highlight the climate impact of tundra wildfires, which positively reinforce climate warming and increased fire frequency through the radiative forcings of their gaseous emissions.</p
    • 

    corecore