273 research outputs found

    Labeling of Peroxisomes for Live Cell Imaging in the Filamentous Fungus Ustilago maydis

    Get PDF
    This is the author accepted manuscript. The final version is available from Humana Press via the DOI in this record.The basidiomycete fungus Ustilago maydis has emerged as a powerful model organism to study fundamental biological processes. U. maydis shares many important features with human cells but provides the technical advantages of yeast. Recently, U. maydis has also been used to investigate fundamental processes in peroxisome biology. Here, we present an efficient yeast recombination-based cloning method to construct and express fluorescent fusion proteins (or conditional mutant protein alleles) which target peroxisomes in the fungus U. maydis. In vivo analysis is pivotal for understanding the underlying mechanisms of organelle motility. We focus on the in vivo labelling of peroxisomes in U. maydis and present approaches to analyze peroxisomal motility.We would like to thank G. Steinberg for his support and the opportunity to publish this method chapter. This work was supported by the Portuguese Foundation for Science and Technology and FEDER/COMPETE (SFRH/BD/73532/2010 to S.C. Guimarães) and CRUP/Treaty of Windsor (ACÇÕES INTEGRADAS 2009, B-33/09 to G. Steinberg and M. Schrader). M. Schrader acknowledges support from the Marie Curie Initial Training Network (ITN) action (FP7-2012 PERFUME-316723)

    Fluorescent markers of the microtubule cytoskeleton in Zymoseptoria tritici

    Get PDF
    AbstractThe microtubule cytoskeleton supports vital processes in fungal cells, including hyphal growth and mitosis. Consequently, it is a target for fungicides, such as benomyl. The use of fluorescent fusion proteins to illuminate microtubules and microtubule-associated proteins has led to a break-through in our understanding of their dynamics and function in fungal cells. Here, we introduce fluorescent markers to visualize microtubules and accessory proteins in the wheat pathogen Zymoseptoria tritici. We fused enhanced green-fluorescent protein to α-tubulin (ZtTub2), to ZtPeb1, a homologue of the mammalian plus-end binding protein EB1, and to ZtGrc1, a component of the minus-end located γ-tubulin ring complex, involved in the nucleation of microtubules. In vivo observation confirms the localization and dynamic behaviour of all three markers. These marker proteins are useful tools for understanding the organization and importance of the microtubule cytoskeleton in Z. tritici

    ATP prevents Woronin bodies from sealing septal pores in unwounded cells of the fungus Zymoseptoria tritici

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Septa of filamentous ascomycetes are perforated by septal pores that allow communication between individual hyphal compartments. Upon injury, septal pores are plugged rapidly by Woronin bodies (WBs), thereby preventing extensive cytoplasmic bleeding. The mechanism by which WBs translocate into the pore is not known, but it has been suggested that wound-induced cytoplasmic bleeding "flushes" WBs into the septal opening. Alternatively, contraction of septum-associated tethering proteins may pull WBs into the septal pore. Here, we investigate Woronin body dynamics in the wheat pathogen Zymoseptoria tritici. Ultrastructural studies showed that 3.4 ± 0.2 WBs reside on each side of a septum and that single WBs of 128.5 ± 3.6 nm in diameter seal the septal pore (41±1.5 nm). Live cell imaging of green-fluorescent ZtHex1, a major protein in WBs, and the integral plasma membrane protein ZtSso1 confirms WB translocation into the septal pore. This was associated with the occasional formation of a plasma membrane "balloon", extruding into the dead cell, suggesting that the plasma membrane rapidly seals the wounded septal pore wound. Minor amounts of fluorescent ZtHex1-eGFP appeared associated with the "ballooning" plasma membrane, indicating that cytoplasmic ZtHex1-eGFP is recruited to the extending plasma membrane. Surprisingly, in ~15% of all cases, WBs moved from the ruptured cell into the septal pore. This translocation against the cytoplasmic flow suggests that an active mechanism drives in WB plugging. Indeed, treatment of unwounded and intact cells with the respiration inhibitor CCCP induced WB translocation into the pores. Moreover, CCCP treatment recruited cytoplasmic ZtHex1-eGFP to the lateral plasma membrane of the cells. Thus, keeping the WBs out of the septal pores, in Z. tritici, is an ATP-dependent process

    On the Gromov-Witten invariants of the moduli of bundles on a surface.

    Get PDF
    Depto. de Álgebra, Geometría y TopologíaFac. de Ciencias MatemáticasTRUEpu

    A codon-optimized green fluorescent protein for live cell imaging in Zymoseptoria tritici

    Get PDF
    AbstractFluorescent proteins (FPs) are powerful tools to investigate intracellular dynamics and protein localization. Cytoplasmic expression of FPs in fungal pathogens allows greater insight into invasion strategies and the host-pathogen interaction. Detection of their fluorescent signal depends on the right combination of microscopic setup and signal brightness. Slow rates of photo-bleaching are pivotal for in vivo observation of FPs over longer periods of time. Here, we test green-fluorescent proteins, including Aequorea coerulescens GFP (AcGFP), enhanced GFP (eGFP) from Aequorea victoria and a novel Zymoseptoria tritici codon-optimized eGFP (ZtGFP), for their usage in conventional and laser-enhanced epi-fluorescence, and confocal laser-scanning microscopy. We show that eGFP, expressed cytoplasmically in Z. tritici, is significantly brighter and more photo-stable than AcGFP. The codon-optimized ZtGFP performed even better than eGFP, showing significantly slower bleaching and a 20–30% further increase in signal intensity. Heterologous expression of all GFP variants did not affect pathogenicity of Z. tritici. Our data establish ZtGFP as the GFP of choice to investigate intracellular protein dynamics in Z. tritici, but also infection stages of this wheat pathogen inside host tissue

    Peroxisomes, lipid droplets, and endoplasmic reticulum "hitchhike" on motile early endosomes

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Intracellular transport is mediated by molecular motors that bind cargo to be transported along the cytoskeleton. Here, we report, for the first time, that peroxisomes (POs), lipid droplets (LDs), and the endoplasmic reticulum (ER) rely on early endosomes (EEs) for intracellular movement in a fungal model system. We show that POs undergo kinesin-3- and dynein-dependent transport along microtubules. Surprisingly, kinesin-3 does not colocalize with POs. Instead, the motor moves EEs that drag the POs through the cell. PO motility is abolished when EE motility is blocked in various mutants. Most LD and ER motility also depends on EE motility, whereas mitochondria move independently of EEs. Covisualization studies show that EE-mediated ER motility is not required for PO or LD movement, suggesting that the organelles interact with EEs independently. In the absence of EE motility, POs and LDs cluster at the growing tip, whereas ER is partially retracted to subapical regions. Collectively, our results show that moving EEs interact transiently with other organelles, thereby mediating their directed transport and distribution in the cell.This work was supported by the Portuguese Foundation for Science and Technology and FEDER/COMPETE (SFRH/BD/73532/2010 to S.C. Guimaraes) and CRUP/Treaty of Windsor (ACÇÕES INTEGRAD AS 2009, B-33/09 to G. Steinberg and M. Schuster). G. Steinberg acknowledges support from the Biotechnology and Biological Sciences Research Counc

    New insights into the peroxisomal protein inventory: Acyl-CoA oxidases and -dehydrogenases are an ancient feature of peroxisomes

    Get PDF
    Journal ArticleCopyright © 2014 Elsevier B.V. All rights reserved.Peroxisomes are ubiquitous organelles which participate in a variety of essential biochemical pathways. An intimate interrelationship between peroxisomes and mitochondria is emerging in mammals, where both organelles cooperate in fatty acid β-oxidation and cellular lipid homeostasis. As mitochondrial fatty acid β-oxidation is lacking in yeast and plants, suitable genetically accessible model systems to study this interrelationship are scarce. Here, we propose the filamentous fungus Ustilago maydis as a suitable model for those studies. We combined molecular cell biology, bioinformatics and phylogenetic analyses and provide the first comprehensive inventory of U. maydis peroxisomal proteins and pathways. Studies with a peroxisome-deficient Δpex3 mutant revealed the existence of parallel and complex, cooperative β-oxidation pathways in peroxisomes and mitochondria, mimicking the situation in mammals. Furthermore, we provide evidence that acyl-CoA dehydrogenases (ACADs) are bona fide peroxisomal proteins in fungi and mammals and together with acyl-CoA oxidases (ACOX) belong to the basic enzymatic repertoire of peroxisomes. A genome comparison with baker's yeast and human gained new insights into the basic peroxisomal protein inventory shared by humans and fungi and revealed novel peroxisomal proteins and functions in U. maydis. The importance of our findings for the evolution and function of the complex interrelationship between peroxisomes and mitochondria in fatty acid β-oxidation is discussed.Portuguese Foundation for Science and Technology (FCT)FEDER/COMPETEBBSRCCRUP/Treaty of Windso

    Phosphopantetheinyl transferase (Ppt)-mediated biosynthesis of lysine, but not siderophores or DHN melanin, is required for virulence of Zymoseptoria tritici on wheat

    Get PDF
    Zymoseptoria tritici is the causal agent of Septoria tritici blotch (STB) disease of wheat. Z. tritici is an apoplastic fungal pathogen, which does not penetrate plant cells at any stage of infection, and has a long initial period of symptomless leaf colonisation. During this phase it is unclear to what extent the fungus can access host plant nutrients or communicate with plant cells. Several important primary and secondary metabolite pathways in fungi are regulated by the post-translational activator phosphopantetheinyl transferase (Ppt) which provides an essential co-factor for lysine biosynthesis and the activities of non-ribosomal peptide synthases (NRPS) and polyketide synthases (PKS). To investigate the relative importance of lysine biosynthesis, NRPS-based siderophore production and PKS-based DHN melanin biosynthesis, we generated deletion mutants of ZtPpt. The ?ZtPpt strains were auxotrophic for lysine and iron, non-melanised and non-pathogenic on wheat. Deletion of the three target genes likely affected by ZtPpt loss of function (Aar- lysine; Nrps1-siderophore and Pks1- melanin), highlighted that lysine auxotrophy was the main contributing factor for loss of virulence, with no reduction caused by loss of siderophore production or melanisation. This reveals Ppt, and the lysine biosynthesis pathway, as potential targets for fungicides effective against Z. tritici

    Flight Programs and X-ray Optics Development at MSFC

    Get PDF
    The X-ray astronomy group at the Marshall Space Flight Center is developing electroformed nickel/cobalt x-ray optics for suborbital and orbital experiments. Suborbital instruments include the Focusing X-ray Solar Imager (FOXSI) and Micro-X sounding rocket experiments and the HERO balloon payload. Our current orbital program is the fabrication of a series of mirror modules for the Astronomical Roentgen Telescope (ART) to be launched on board the Russian-German Spectrum Roentgen Gamma Mission (SRG.) The details and status of these various programs are presented. A second component of our work is the development of fabrication techniques and optical metrology to improve the angular resolution of thin shell optics to the arcsecond-level. The status of these x-ray optics technology developments is also presented
    corecore