8,077 research outputs found

    Neural Modeling and Control of Diesel Engine with Pollution Constraints

    Full text link
    The paper describes a neural approach for modelling and control of a turbocharged Diesel engine. A neural model, whose structure is mainly based on some physical equations describing the engine behaviour, is built for the rotation speed and the exhaust gas opacity. The model is composed of three interconnected neural submodels, each of them constituting a nonlinear multi-input single-output error model. The structural identification and the parameter estimation from data gathered on a real engine are described. The neural direct model is then used to determine a neural controller of the engine, in a specialized training scheme minimising a multivariable criterion. Simulations show the effect of the pollution constraint weighting on a trajectory tracking of the engine speed. Neural networks, which are flexible and parsimonious nonlinear black-box models, with universal approximation capabilities, can accurately describe or control complex nonlinear systems, with little a priori theoretical knowledge. The presented work extends optimal neuro-control to the multivariable case and shows the flexibility of neural optimisers. Considering the preliminary results, it appears that neural networks can be used as embedded models for engine control, to satisfy the more and more restricting pollutant emission legislation. Particularly, they are able to model nonlinear dynamics and outperform during transients the control schemes based on static mappings.Comment: 15 page

    NMA Survey of CO and HCN Emission from Nearby Active Galaxies

    Full text link
    High resolution (a few arcseconds) observations of CO(1-0) and HCN(1-0) emission from nearby Seyfert galaxies have been conducted with the Nobeyama Millimeter Array. Based on the observed CO distributions and kinematics,we suggest that a small scale (a few 100 pc - a few kpc) distortion of the underlying potential seems to be necessary for Seyfert activity, although it is not a sufficient condition. We also find that the Toomre's Q values in the centers of Seyfert galaxies tend to be larger than unity, indicating the circumnuclear molecular gas disks around Seyfert nuclei would be gravitationally stable. The HCN/CO integrated intensity ratios (R_HCN/CO) range over an order of magnitude, from 0.086 to 0.6. The Seyfert galaxies with high R_HCN/CO may have an extended (r ~ 100 pc scale) envelope of obscuring material. The presence of kpc scale jet/ outflow might be also related to the extremely high R_HCN/CO.Comment: To appear in the Proceedings of the 3rd Cologne-Zermatt Symposium, ``The Physics and Chemistry of the Interstellar Medium'

    Magnetic patterning of (Ga,Mn)As by hydrogen passivation

    Full text link
    We present an original method to magnetically pattern thin layers of (Ga,Mn)As. It relies on local hydrogen passivation to significantly lower the hole density, and thereby locally suppress the carrier-mediated ferromagnetic phase. The sample surface is thus maintained continuous, and the minimal structure size is of about 200 nm. In micron-sized ferromagnetic dots fabricated by hydrogen passivation on perpendicularly magnetized layers, the switching fields can be maintained closer to the continuous film coercivity, compared to dots made by usual dry etch techniques

    Bar-driven Transport of Molecular Gas to Galactic Centers and Its Consequences

    Get PDF
    We study the characteristics of molecular gas in the central regions of spiral galaxies on the basis of our CO(J=1-0) imaging survey of 20 nearby spiral galaxies using the NRO and OVRO millimeter arrays. Condensations of molecular gas at galactic centers with sizescales < 1 kpc and CO-derived masses M_gas(R<500pc) = 10^8 - 10^9 M_sun are found to be prevalent in the gas-rich L^* galaxies. Moreover, the degree of gas concentration to the central kpc is found to be higher in barred systems than in unbarred galaxies. This is the first statistical evidence for the higher central concentration of molecular gas in barred galaxies, and it strongly supports the theory of bar-driven gas transport. It is most likely that more than half of molecular gas within the central kpc of a barred galaxy was transported there from outside by the bar. The supply of gas has exceeded the consumption of gas by star formation in the central kpc, resulting in the excess gas in the centers of barred systems. The mean rate of gas inflow is statistically estimated to be larger than 0.1 - 1 M_sun/yr. The correlation between gas properties in the central kpc and the type of nuclear spectrum (HII, LINER, or Seyfert) is investigated. A correlation is found in which galaxies with larger gas-to-dynamical mass ratios tend to have HII nuclear spectra, while galaxies with smaller ratios show spectra indicating AGN. Also, the theoretical prediction of bar-dissolution by condensation of gas to galactic centers is observationally tested. It is suggested that the timescale for bar dissolution is larger than 10^8 - 10^10 yr, or a bar in a L^* galaxy is not destroyed by a condensation of 10^8 - 10^9 M_sun gas in the central kpc.Comment: AASTeX, 20 pages, 8 eps figs, ApJ in press (10 Nov. 1999 issue

    Diffuse and Gravitationally Stable Molecular Gas in the Post-Starburst Galaxy NGC 5195

    Full text link
    The Nobeyama Millimeter Array (NMA) has been used to make aperture synthesis CO(1-0) observations of the post-starburst galaxy NGC 5195. CO(1-0) and HCN(1-0) observations of NGC 5195 using the Nobeyama 45 m telescope are also presented. High-resolution (1".9 x 1".8 or 86 pc x 81 pc at D = 9.3 Mpc) NMA maps show a strong concentration of CO emission toward the central a few 100 pc region of NGC 5195, despite the fact that the current massive star formation is suppressed there. The HCN-to-CO integrated intensity ratio on the brightness temperature scale, R_{HCN/CO}, is about 0.02 within the central r < 400 pc region. This R_{HCN/CO} is smaller than those in starburst regions by a factor of 5 - 15. These molecular gas properties would explain why NGC 5195 is in a post-starburst phase; most of the dense molecular cores (i.e., the very sites of massive star formation) have been consumed away by a past starburst event, and therefore a burst of massive star formation can no longer last, although a large amount of low density gas still exists. We propose that dense molecular gas can not be formed from remaining diffuse molecular gas because the molecular gas in the center of NGC 5195 is too stable to form dense cores via gravitational instabilities of diffuse molecular gas.Comment: 26 pages, 10 figures, PASJ, vol. 54, in press. For the preprint with high resolution figures, see http://www.nro.nao.ac.jp/library/report/list.html or http://www.ioa.s.u-tokyo.ac.jp/~kkohno/n5195/all.ps.g

    A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream

    Get PDF
    Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20oC) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials

    Abundant dust found in intergalactic space

    Get PDF
    Galactic dust constitutes approximately half of the elements more massive than helium produced in stellar nucleosynthesis. Notwithstanding the formation of dust grains in the dense, cool atmospheres of late-type stars, there still remain huge uncertainties concerning the origin and fate of galactic stardust. In this paper, we identify the intergalactic medium (i.e. the region between gravitationally-bound galaxies) as a major sink for galactic dust. We discover a systematic shift in the colour of background galaxies viewed through the intergalactic medium of the nearby M81 group. This reddening coincides with atomic, neutral gas previously detected between the group members. The dust-to-HI mass ratio is high (1/20) compared to that of the solar neighborhood (1/120) suggesting that the dust originates from the centre of one or more of the galaxies in the group. Indeed, M82, which is known to be ejecting dust and gas in a starburst-driven superwind, is cited as the probable main source.Comment: 5 pages, 3 figures, 1 table. ApJ Letters in pres

    Gas Dynamics in the LINER Galaxy NGC 5005: Episodic Fueling of a Nuclear Disk

    Full text link
    We report high-resolution CO(1-0) observations in the central 6 kpc of the LINER galaxy NGC 5005 with the Owens Valley Radio Observatory millimeter array. Molecular gas is distributed in three components - a ring at a radius of about 3 kpc, a strong central condensation, and a stream to the northwest of the nucleus but inside the 3 kpc ring. The central condensation is a disk of about 1 kpc radius with a molecular gas mass of 2 x 10^9 M_sun. The stream between the 3 kpc ring and the nuclear disk lies on a straight dust lane seen in the optical. If this material moves in the plane of the galaxy, it has a velocity offset by up to ~ 150 km/s from galactic rotation. We suggest that an optically inconspicuous stellar bar lying within the 3 kpc ring can explain the observed gas dynamics. This bar is expected to connect the nuclear disk and the ring along the position angle of the northwest stream. A position-velocity cut in this direction reveals features which match the characteristic motions of gas in a barred potential. Our model indicates that gas in the northwest stream is on an x_1 orbit at the bar's leading edge; it is falling into the nucleus with a large noncircular velocity, and will eventually contribute about 2 x 10^8 M_sun to the nuclear disk. If most of this material merges with the disk on its first passage of pericenter, the gas accretion rate during the collision will be 50 M_sun/yr. We associate the nuclear disk with an inner 2:1 Lindblad resonance, and the 3 kpc ring with an inner 4:1 Lindblad resonance. The high rate of bar-driven inflow and the irregular appearance of the northwest stream suggest that a major fueling event is in progress in NGC 5005. Such episodic (rather than continuous) gas supply can regulate the triggering of starburst and accretion activity in galactic nuclei. (abridged)Comment: 26 pages, 12 figures, AASTeX, ApJ in press (Feb. 10, 2000). For full-resolution figures, see http://www.ovro.caltech.edu/mm/science/science.htm
    corecore