6 research outputs found

    Thermoelectric Amplification of Phonons in Graphene

    Get PDF
    Amplification of acoustic phonons due to an external temperature gredient (T\nabla T) in Graphene was studied theoretically. The threshold temperature gradient (T)0g(\nabla T)_0^{g} at which absorption switches over to amplification in Graphene was evaluated at various frequencies ωq\omega_q and temperatures TT. For T=77KT = 77K and frequency ωq=12THz\omega_q = 12THz, (T)0g=0.37Km1(\nabla T)_0^{g} = 0.37Km^{-1}. The calculation was done in the regime at ql>>1ql >> 1. The dependence of the normalized (Γ/Γ0\Gamma/\Gamma_0) on the frequency ωq\omega_q and the temperature gradient (T/T)(\nabla T/T) are evaluated numerically and presented graphically. The calculated (T)0g(\nabla T)_0^{g} for Graphene is lower than that obtained for homogeneous semiconductors (nInSbn-InSb) (T)0hom103Kcm1(\nabla T)_0^{hom} \approx 10^3Kcm^{-1}, Superlattices (T)0SL=384Kcm1(\nabla T)_0^{SL} = 384Kcm^{-1}, Cylindrical Quantum Wire (T)0cqw102Kcm1(\nabla T)_0^{cqw} \approx 10^2Kcm^{-1}. This makes Graphene a much better material for thermoelectric phonon amplifier.Comment: 12 Pages, 6 figure

    Single-end measurement of root mean square differential group delay in single-mode fibers by polarization optical-time domain reflectometry

    No full text
    We present a novel technique, based on polarization-sensitive reflectometry, able to perform single-end measurements of the root mean square differential group delay of single-mode fibers. The technique uses single wavelength measurements and may be applied to sections of fiber links. The theoretical analysis is supported by experimental results

    Single-end distributed measurement of root mean square differential group delay in single mode fibers

    No full text
    A novel technique top erform distributed single-end measurements of the root mean square differential group delay of single-mode fibers is presented. The theoretical analysis is supported by preliminary esperimental results
    corecore