55 research outputs found
Quantum Monte Carlo Calculations of Pion Scattering from Li
We show that the neutron and proton transition densities predicted by recent
quantum Monte Carlo calculations for A=6,7 nuclei are consistent with pion
scattering from 6Li and 7Li at energies near the Delta resonance. This has
provided a microscopic understanding of the enhancement factors for quadrople
excitations, which were needed to describe pion inelastic scattering within the
nuclear shell model of Cohen and Kurath.Comment: 10 pages, REVTeX, 3 postscript figures; added calculation of elastic
and inelastic pion scattering from 6Li at multiple energie
Recommended from our members
Development of an ultra cold neutron source at MLNSC
Ultra Cold Neutrons (UCN) can be produced at spallation sources using a variety of techniques. To date the technique used has been to Bragg scatter and Doppler shift cold neutrons into UCN from a moving crystal. This is particularly applicable to short-pulse spallation sources. We are presently constructing a UCN source at LANSCE using this method. In addition, large gains in UCN density should be possible using cryogenic UCN sources. Research is under way at Gatchina to demonstrate technical feasibility of a frozen deuterium source. If successful, a source of this type could be implemented at future spallation sources, such as the long pulse source being planned at Los Alamos, with a UCN density that may be two orders of magnitude higher than that presently available at reactors
A New Solid Deuterium Source of Ultra-Cold Neutrons
In polarized neutron decay, the angular correlation between the neutron spin and the
direction of emission of the electron is characterized by the coefficient A. Measuring
A involves determining the forward-backward asymmetry of the decay beta with
respect to the direction of the neutron polarization. The value of A, when combined
with measurements of the neutron lifetime, determines the values of the vector and
axial vector weak coupling constants, Gv and GA. The value of Gv can also be
determined by measurements of superallowed nuclear beta decay and by requiring
that the Cabibo-Kobayashi-Maskawi (CKM) mixing matrix be unitary along with the
measured value of other elements of the CKM matrix
Recommended from our members
An ultra-cold neutron source at the MLNSC
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have carried out the research and development of an Ultra-Cold Neutron (UCN) source at the Manuel Lujan Neutron Scattering Center (MLNSC). A first generation source was constructed to test the feasibility of a rotor source. The source performed well with an UCN production rate reasonably consistent with that expected. This source can now provide the basis for further development work directed at using UCN in fundamental physics research as well as possible applications in materials science
Probing the isovector transition strength of the low-lying nuclear excitations induced by inverse kinematics proton scattering
A compact approach based on the folding model is suggested for the
determination of the isoscalar and isovector transition strengths of the
low-lying () excitations induced by inelastic proton
scattering measured with exotic beams. Our analysis of the recently measured
inelastic O+p scattering data at and 43 MeV/nucleon
has given for the first time an accurate estimate of the isoscalar
and isovector deformation parameters (which cannot be determined from
the (p,p') data alone by standard methods) for 2 and excited
states in O. Quite strong isovector mixing was found in the 2
inelastic O+p scattering channel, where the strength of the isovector
form factor (prototype of the Lane potential) corresponds to a
value almost 3 times larger than and a ratio of nuclear transition
matrix elements .Comment: 5 pages, 3 figure
Position-sensitive detection of ultracold neutrons with an imaging camera and its implications to spectroscopy
Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated
using an imaging charge-coupled device (CCD) camera. A spatial resolution less
than 15 m has been achieved, which is equivalent to an UCN energy
resolution below 2 pico-electron-volts through the relation . Here, the symbols , , and are the
energy resolution, the spatial resolution, the neutron rest mass and the
gravitational acceleration, respectively. A multilayer surface convertor
described previously is used to capture UCNs and then emits visible light for
CCD imaging. Particle identification and noise rejection are discussed through
the use of light intensity profile analysis. This method allows different types
of UCN spectroscopy and other applications.Comment: 12 figures, 28 pages, accepted for publication in NIM
A proposed measurement of the ß asymmetry in neutron decay with the Los Alamos Ultra-Cold Neutron Source
This article reviews the status of an experiment to study the neutron spin-electron angular correlation with the Los Alamos Ultra-Cold Neutron (UCN) source. The experiment will generate UCNs from a novel solid deuterium, spallation source, and polarize them in a solenoid magnetic field. The experiment spectrometer will consist of a neutron decay region in a solenoid magnetic field combined with several different detector possibilities. An electron beam and a magnetic spectrometer will provide a precise, absolute calibration for these detectors. An A-correlation measurement with a relative precision of 0.2% is expected by the end of 2002
- …