161 research outputs found

    Max-Plus Algebra for Complex Variables and Its Application to Discrete Fourier Transformation

    Full text link
    A generalization of the max-plus transformation, which is known as a method to derive cellular automata from integrable equations, is proposed for complex numbers. Operation rules for this transformation is also studied for general number of complex variables. As an application, the max-plus transformation is applied to the discrete Fourier transformation. Stretched coordinates are introduced to obtain the max-plus transformation whose imaginary part coinsides with a phase of the discrete Fourier transformation

    Bilinear Equations and B\"acklund Transformation for Generalized Ultradiscrete Soliton Solution

    Full text link
    Ultradiscrete soliton equations and B\"acklund transformation for a generalized soliton solution are presented. The equations include the ultradiscrete KdV equation or the ultradiscrete Toda equation in a special case. We also express the solution by the ultradiscrete permanent, which is defined by ultradiscretizing the signature-free determinant, that is, the permanent. Moreover, we discuss a relation between B\"acklund transformations for discrete and ultradiscrete KdV equations.Comment: 11 page

    N-soliton solutions to the DKP equation and Weyl group actions

    Full text link
    We study soliton solutions to the DKP equation which is defined by the Hirota bilinear form, {\begin{array}{llll} (-4D_xD_t+D_x^4+3D_y^2) \tau_n\cdot\tau_n=24\tau_{n-1}\tau_{n+1}, (2D_t+D_x^3\mp 3D_xD_y) \tau_{n\pm 1}\cdot\tau_n=0 \end{array} \quad n=1,2,.... where τ0=1\tau_0=1. The τ\tau-functions τn\tau_n are given by the pfaffians of certain skew-symmetric matrix. We identify one-soliton solution as an element of the Weyl group of D-type, and discuss a general structure of the interaction patterns among the solitons. Soliton solutions are characterized by 4N×4N4N\times 4N skew-symmetric constant matrix which we call the BB-matrices. We then find that one can have MM-soliton solutions with MM being any number from NN to 2N12N-1 for some of the 4N×4N4N\times 4N BB-matrices having only 2N2N nonzero entries in the upper triangular part (the number of solitons obtained from those BB-matrices was previously expected to be just NN).Comment: 22 pages, 12 figure

    Ultra-discrete Optimal Velocity Model: a Cellular-Automaton Model for Traffic Flow and Linear Instability of High-Flux Traffic

    Full text link
    In this paper, we propose the ultra-discrete optimal velocity model, a cellular-automaton model for traffic flow, by applying the ultra-discrete method for the optimal velocity model. The optimal velocity model, defined by a differential equation, is one of the most important models; in particular, it successfully reproduces the instability of high-flux traffic. It is often pointed out that there is a close relation between the optimal velocity model and the mKdV equation, a soliton equation. Meanwhile, the ultra-discrete method enables one to reduce soliton equations to cellular automata which inherit the solitonic nature, such as an infinite number of conservation laws, and soliton solutions. We find that the theory of soliton equations is available for generic differential equations, and the simulation results reveal that the model obtained reproduces both absolutely unstable and convectively unstable flows as well as the optimal velocity model.Comment: 9 pages, 6 figure

    Tropical Krichever construction for the non-periodic box and ball system

    Full text link
    A solution for an initial value problem of the box and ball system is constructed from a solution of the periodic box and ball system. The construction is done through a specific limiting process based on the theory of tropical geometry. This method gives a tropical analogue of the Krichever construction, which is an algebro-geometric method to construct exact solutions to integrable systems, for the non-periodic system.Comment: 13 pages, 1 figur

    On a family of solutions of the KP equation which also satisfy the Toda lattice hierarchy

    Full text link
    We describe the interaction pattern in the xx-yy plane for a family of soliton solutions of the Kadomtsev-Petviashvili (KP) equation, (4ut+uxxx+6uux)x+3uyy=0(-4u_{t}+u_{xxx}+6uu_x)_{x}+3u_{yy}=0. Those solutions also satisfy the finite Toda lattice hierarchy. We determine completely their asymptotic patterns for y±y\to \pm\infty, and we show that all the solutions (except the one-soliton solution) are of {\it resonant} type, consisting of arbitrary numbers of line solitons in both aymptotics; that is, arbitrary NN_- incoming solitons for yy\to -\infty interact to form arbitrary N+N_+ outgoing solitons for yy\to\infty. We also discuss the interaction process of those solitons, and show that the resonant interaction creates a {\it web-like} structure having (N1)(N+1)(N_--1)(N_+-1) holes.Comment: 18 pages, 16 figures, submitted to JPA; Math. Ge

    Rational solutions of the discrete time Toda lattice and the alternate discrete Painleve II equation

    Get PDF
    The Yablonskii-Vorob'ev polynomials yn(t)y_{n}(t), which are defined by a second order bilinear differential-difference equation, provide rational solutions of the Toda lattice. They are also polynomial tau-functions for the rational solutions of the second Painlev\'{e} equation (PIIP_{II}). Here we define two-variable polynomials Yn(t,h)Y_{n}(t,h) on a lattice with spacing hh, by considering rational solutions of the discrete time Toda lattice as introduced by Suris. These polynomials are shown to have many properties that are analogous to those of the Yablonskii-Vorob'ev polynomials, to which they reduce when h=0h=0. They also provide rational solutions for a particular discretisation of PIIP_{II}, namely the so called {\it alternate discrete} PIIP_{II}, and this connection leads to an expression in terms of the Umemura polynomials for the third Painlev\'{e} equation (PIIIP_{III}). It is shown that B\"{a}cklund transformation for the alternate discrete Painlev\'{e} equation is a symplectic map, and the shift in time is also symplectic. Finally we present a Lax pair for the alternate discrete PIIP_{II}, which recovers Jimbo and Miwa's Lax pair for PIIP_{II} in the continuum limit h0h\to 0.Comment: 23 pages, IOP style. Title changed, and connection with Umemura polynomials adde

    Solitons in the Higgs phase -- the moduli matrix approach --

    Full text link
    We review our recent work on solitons in the Higgs phase. We use U(N_C) gauge theory with N_F Higgs scalar fields in the fundamental representation, which can be extended to possess eight supercharges. We propose the moduli matrix as a fundamental tool to exhaust all BPS solutions, and to characterize all possible moduli parameters. Moduli spaces of domain walls (kinks) and vortices, which are the only elementary solitons in the Higgs phase, are found in terms of the moduli matrix. Stable monopoles and instantons can exist in the Higgs phase if they are attached by vortices to form composite solitons. The moduli spaces of these composite solitons are also worked out in terms of the moduli matrix. Webs of walls can also be formed with characteristic difference between Abelian and non-Abelian gauge theories. We characterize the total moduli space of these elementary as well as composite solitons. Effective Lagrangians are constructed on walls and vortices in a compact form. We also present several new results on interactions of various solitons, such as monopoles, vortices, and walls. Review parts contain our works on domain walls (hep-th/0404198, hep-th/0405194, hep-th/0412024, hep-th/0503033, hep-th/0505136), vortices (hep-th/0511088, hep-th/0601181), domain wall webs (hep-th/0506135, hep-th/0508241, hep-th/0509127), monopole-vortex-wall systems (hep-th/0405129, hep-th/0501207), instanton-vortex systems (hep-th/0412048), effective Lagrangian on walls and vortices (hep-th/0602289), classification of BPS equations (hep-th/0506257), and Skyrmions (hep-th/0508130).Comment: 89 pages, 33 figures, invited review article to Journal of Physics A: Mathematical and General, v3: typos corrected, references added, the published versio

    Multi-indexed Wilson and Askey-Wilson Polynomials

    Full text link
    As the third stage of the project multi-indexed orthogonal polynomials, we present, in the framework of 'discrete quantum mechanics' with pure imaginary shifts in one dimension, the multi-indexed Wilson and Askey-Wilson polynomials. They are obtained from the original Wilson and Askey-Wilson polynomials by multiple application of the discrete analogue of the Darboux transformations or the Crum-Krein-Adler deletion of 'virtual state solutions' of type I and II, in a similar way to the multi-indexed Laguerre, Jacobi and (q-)Racah polynomials reported earlier.Comment: 30 pages. Three references added. To appear in J.Phys.A. arXiv admin note: text overlap with arXiv:1203.586
    corecore