82 research outputs found

    Role of Nε-(Carboxymethyl)Lysine in the Development of Ischemic Heart Disease in Type 2 Diabetes Mellitus

    Get PDF
    This study aims to determine the levels of Nε-(carboxymethyl)lysine (CML) in patients with Type 2 diabetic patients with and without ischemic heart disease (IHD) and to find for a possible association between circulating CML and a number of clinical parameters including lipids, hemoglobin A1c (HbA1c) and malondialdehyde (MDA) in Type 2 diabetic IHD patients. Serum CML levels were measured by enzyme-linked immunosorbent assay using polyclonal anti-CML antibodies. Serum levels of CML and MDA were assessed in 60 IHD patients with Type 2 diabetes, 43 IHD patients without Type 2 diabetes, 64 Type 2 diabetics without IHD, and 80 sex- and age-matched healthy subjects. Correlations studies between CML levels and lipids, HbA1c, and lipid peroxidation were performed in Type 2 diabetes patients with and without IHD. A statistical significance was observed in the levels of serum glucose, lipids (triglyceride, total cholesterol, HDL-cholesterol), MDA, HbA1c, CML and LDL-cholesterol (p<0.05) between the groups of the study. CML levels were significantly increased in diabetic IHD patients compared with Type 2 diabetes patients but without IHD (537.1 ± 86.1 vs 449.7 ± 54.9, p<0.001). A positive correlation was observed between serum levels of CML and MDA, r = 0.338 (p = 0.008) in Type 2 diabetes patients with IHD. However, age, HbA1c and lipids had no significant influence on CML levels among diabetics (p>0.05). In conclusion, this study demonstrates the effect of both diabetes and oxidative stress on the higher levels of circulating CML. These results showed that increased serum levels of CML are associated with the development of IHD in Type 2 diabetes mellitus

    Nε-(Carboxymethyl)lysine and Coronary Atherosclerosis-Associated Low Density Lipoprotein Abnormalities in Type 2 Diabetes: Current Status

    Get PDF
    In comparison to the general population, individuals with diabetes suffer a 3- to 4-fold increased risk for developing complications of atherosclerosis and vascular insufficiency. This fact should be taken into account to develop a suitable determinant for the early detection of these complications and subsequently reduce the adverse effect of type 2 diabetes. In vitro experiments have shown that the products of glucose auto-oxidation and Amadori adducts are both potential sources of Nε-(carboxymethyl)lysine (CML). Excessive formation of CML on low density lipoprotein (LDL) has been proposed to be an important mechanism for the dyslipidemia and accelerated atherogenesis observed in patients with type 2 diabetes. It has been postulated that the uptake of CML-LDL by LDL receptors is impaired, thereby decreasing its clearance from the blood circulation. Alternatively, the uptake of these modified LDL particles by scavenger receptors on macrophages and vascular smooth muscle cells (SMCs) and by AGE receptors on endothelial cells, SMCs, and monocytes is highly enhanced and this, in turn, is centrally positioned to contribute to the pathogenesis of diabetic vascular complications especially coronary artery disease. The present review summarizes the up-to-date information on effects and mechanism of type 2 diabetes-associated coronary atherosclerosis induced by CML-LDL modification

    F2-Isoprostanes as Novel Biomarkers for Type 2 Diabetes: a Review

    Get PDF
    Oxidative stress (OS) has been implicated as one of the major underlying mechanisms behind many acute and chronic diseases. However, the measurement of free radicals or their end products is complicated. Isoprostanes, derived from the non-enzymatic peroxidation of arachidonic acid are now considered to be reliable biomarkers of oxidant stress in the human body. Isoprostanes are involved in many of the human diseases such as type 2 diabetes. In type 2 diabetes elevated levels of F2-Isoprostanes (F2-IsoPs) have been observed. The measurement of bioactive F2-IsoPs levels offers a unique noninvasive analytical tool to study the role of free radicals in physiology, oxidative stress-related diseases, and acute or chronic inflammatory conditions. Measurement of oxidative stress by various other methods lacks specificity and sensitivity. This review aims to shed light on the implemention of F2-IsoPs measurement as a gold-standard biomarker of oxidative stress in type 2 diabetics

    Effect of Plasminogen Activator Inhibitor-1 and Tissue Plasminogen Activator Polymorphisms on Susceptibility to Type 2 Diabetes in Malaysian Subjects

    Get PDF
    Elevated activity of plasminogen activator inhibitor-1 (PAI-1) and decreased tissue plasminogen activator (tPA) activity are considered to be important risk factors for type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS). The aim of this study was to investigate the association of the PAI-1 4G/5G and tPA Alu-repeat I/D polymorphisms with T2DM in Malaysian subjects. Serum insulin, coronary risk panel, plasma glucose, and PAI-1 4G/5G and tPA Alu-repeat I/D polymorphisms were studied in 303 T2DM subjects (227 with MetS and 76 without MetS) and 131 normal subjects without diabetes and MetS. Statistical analysis showed that the dominant and additive models of PAI-1 4G/5G polymorphism showed a weak association with T2DM without MetS (OR = 2.35, P = 0.045; OR = 1.67, P = 0.058). On the other hand, the recessive model of the tPA Alu-repeat I/D polymorphism showed an association with T2DM with MetS (OR = 3.32, P = 0.013) whereas the dominant and additive models of the tPA Alu-repeat I/D polymorphism were not associated with T2DM either with or without MetS

    Association of plasminogen activator inhibitor-1 and tissue plasminogen activator with type 2 diabetes and metabolic syndrome in Malaysian subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased plasma plasminogen activator inhibitor-1 (PAI-1) activity and decreased tissue plasminogen activator (tPA) activity could be considered a true component of the metabolic syndrome (MetS) associated with an increased risk of developing cardiovascular diseases (CVD) and fibrinolytic abnormalities. The aim of this study was to investigate the association of tPA and its inhibitor PAI-1 with type 2 diabetes (T2D) and MetS and interrelationship between PAI-1and tPA activities and antigens in Malaysian T2D and normal subjects.</p> <p>Methods</p> <p>The plasma activities and antigens of PAI-1 and tPA and the levels of the tPA/PAI-1 complex as well as serum insulin, parameter of the coronary risk panel and plasma glucose at fasting state were studied in 303 T2D subjects (227 with MetS and 76 without MetS), 131 normal non-diabetic non-metabolic subjects and 101 non-diabetic MetS subjects.</p> <p>Results</p> <p>The PAI-1 activity was higher in subjects with T2D with MetS (P = 9.8 × 10<sup>-19</sup>) and non-diabetic subjects with MetS (P = 3.0 × 10<sup>-15</sup>), whereas the tPA activity was lower in T2D with MetS (P = 0.003) as compare to normal subjects. Plasma tPA antigen levels were higher in subjects with T2D with MetS (P = 8.9 × 10<sup>-24</sup>), T2D without MetS (P = 1.3 × 10<sup>-13</sup>) and non-diabetic MetS subjects (P = 0.002). The activity and antigen of PAI-1 in normal subjects were related to insulin resistance (P = 2.2 × 10<sup>-4</sup>; 0.007). Additionally, the PAI-1 activity was associated with an increased waist circumference (P = 2.2 × 10<sup>-4</sup>) and decreased HDL-c (P = 0.005), whereas the tPA activity was associated with decreased FBG (P = 0.028). The highest correlation was between PAI-1 activity and its antigen (R<sup>2 </sup>= 0.695, P = 1.1 × 10<sup>-36</sup>) in diabetic subjects. The tPA activity negatively correlated with its antigen (R<sup>2 </sup>= -0.444, P = 7.7 × 10<sup>-13</sup>) in normal subjects and with the PAI-1 activity and antigen (R<sup>2 </sup>= -0.319, P = 9.9 × 10<sup>-12</sup>; R2 = -0.228, P = 3.4 × 10<sup>-6</sup>) in diabetic subjects.</p> <p>Conclusions</p> <p>PAI-1 and tPA activities and antigens were associated with diabetes and MetS parameters in Malaysian subjects.</p

    Plasminogen activator inhibitor-1 4G/5G polymorphism is associated with metabolic syndrome parameters in Malaysian subjects

    Get PDF
    The plasminogen activator inhibitor-1 4G/5G and tissue plasminogen activator Alu-repeat insertion/deletion polymorphisms might be genetic determinations of increased or decreased of their plasma activities. The aim of this study was to investigate the association of plasminogen activator inhibitor-1 4G/5G and tissue plasminogen activator Alu-repeat I/D polymorphisms with metabolic syndrome parameters in normal Malaysian subjects and to assess the impact of these polymorphisms on their plasma activities and antigens. The genetic polymorphisms were genotyped in 130 normal subjects. In addition, the plasma activities and antigens of plasminogen activator inhibitor-1 and tissue plasminogen activator as well as levels of insulin, glucose, and lipid profile at fasting state were investigated. The subjects with homozygous 4G/4G showed association with an increased triglyceride (p = 0.007), body mass index (p = 0.01) and diastolic blood pressure (p = 0.03). In addition, the plasminogen activator inhibitor-1 4G/5G polymorphism modulates plasma plasminogen activator inhibitor-1 activity and antigen and tissue plasminogen activator activity (p = 0.002, 0.014, 0.003) respectively. These results showed that, the plasminogen activator inhibitor-1 4G/5G polymorphism is associated with metabolic syndrome parameters, plasminogen activator inhibitor-1 and tissue plasminogen activator activities in Malaysian subjects, and may serve to increase the risk of type 2 diabetes and cardiovascular disease in Malaysian subjects

    KCNQ1 Haplotypes Associate with Type 2 Diabetes in Malaysian Chinese Subjects

    Get PDF
    The aim of this study was to investigate the association of single nucleotide polymorphisms (SNPs) and haplotypes of potassium voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1) with type 2 diabetes (T2D) in Malaysian Chinese subjects. The KCNQ1 SNPs rs2237892, rs2283228 and rs2237895 were genotyped in 300 T2D patients and 230 control subjects without diabetes and metabolic syndrome. Two logistic regression models of analysis were applied, the first adjusted for age and gender while the second adjusted for age, gender and body mass index. The additive genetic analysis showed that adjusting for body mass index (BMI) even strengthened association of rs2237892, rs2283228 and rs2237895 with T2D (OR = 2.0, P = 5.1 × 10−5; OR = 1.9, P = 5.2 × 10−5; OR = 1.9, P = 7.8 × 10−5, respectively). The haplotype TCA containing the allele of rs2237892 (T), rs2283228 (C) and rs2237895 (A) was highly protective against T2D (Second model; OR = 0.17, P = 3.7 × 10−11). The KCNQ1 rs2237892 (TT), and the protective haplotype (TCA) were associated with higher beta-cell function (HOMA-B) in normal subjects (P = 0.0002; 0.014, respectively). This study found that KCNQ1 SNPs was associated with T2D susceptibility in Malaysian Chinese subjects. In addition, certain KCNQ1 haplotypes were strongly associated with T2D

    Identification and quantification of phenolic compounds in bambangan (Mangifera pajang Kort.) peels and their free radical scavenging activity.

    Get PDF
    Phenolic compounds and antioxidant capacity of acidified methanolic extract prepared from fully ripe bambangan (Mangifera pajang K.) peel cultivated in Sarawak, Malaysia, were analyzed. The total phenolic content (98.3 mg GAE/g) of bambangan peel powder (BPP) was determined by the Folin-Ciocalteu method. BPP showed a strong potency of antioxidant activity and was consistent with that of BHT and vitamin C as confirmed by the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity and FRAP (ferric-reducing antioxidant power) assays. Gallic acid, p-coumaric acid, ellagic acid, protocatechuic acid, and mangiferin were the major compounds among the 16 phenolics that have been identified and quantified in M. pajang peels with 20.9, 12.7, 7.3, 5.4, and 4.8 mg/g BPP, respectively. Peak identities were confirmed by comparing their retention times, UV-vis absorption spectra, and mass spectra with authentic standards. The 16 phenolic compounds identified in M. pajang K. using HPLC-DAD and TSQ-ESI-MS are reported here for the first time

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world
    corecore