20 research outputs found

    Jet Quenching Parameter with Hyperscaling Violation

    Full text link
    In this paper we study the behavior of jet quenching parameter in the background metric with hyperscaling violation at finite temperature.The background metric is covariant under a generalized Lifshitz scaling symmetry with the dynamical exponent z and hyperscaling exponent θ\theta. We evaluate the jet quenching parameter for certain range of these parameters consistent with the Gubser bound conditions in terms of T, z and θ\theta. We compare our results with those from conformal case and experimental data. Then we add a constant electric field to this background and find its effect on the jet quenching parameter.Comment: 22 pages, 9 figure

    Thermal Quench at Finite t'Hooft Coupling

    Get PDF
    Using holography we have studied thermal electric field quench for infinite and finite t'Hooft coupling constant. The set-up we consider here is D7-brane embedded in (α′\alpha' corrected) AdS-black hole background. It is well-known that due to a time-dependent electric field on the probe brane, a time-dependent current will be produced and it will finally relax to its equilibrium value. We have studied the effect of different parameters of the system on equilibration time. As the most important results, we have observed a universal behaviour in the rescaled equilibration time in the very fast quench regime for different values of the temperature and α′\alpha' correction parameter. It seems that in the slow quench regime the system behaves adiabatically. We have also observed that the equilibration time decreases in finite t'Hooft coupling limit.Comment: 6 pages, 9 figure

    Application of AdS/CFT in Quark-Gluon Plasma

    Get PDF
    We review some important applications of AdS/CFT correspondence to gain insight into properties of the quark-gluon plasma. We study some important quantities such as drag force, screening length, and jet-quenching parameter of an external probe quark and also quark-antiquark configuration. In particular, we focus on the STU background and compare our results with other important backgrounds

    Decay widths of large-spin mesons from the non-critical string/gauge duality

    Full text link
    In this paper, we use the non-critical string/gauge duality to calculate the decay widths of large-spin mesons. Since it is believed that the string theory of QCD is not a ten dimensional theory, we expect that the non-critical versions of ten dimensional black hole backgrounds lead to better results than the critical ones. For this purpose we concentrate on the confining theories and consider two different six dimensional black hole backgrounds. We choose the near extremal AdS6 model and the near extremal KM model to compute the decay widths of large-spin mesons. Then, we present our results from these two non-critical backgrounds and compare them together with those from the critical models and experimental data.Comment: 21 pages and 3 figure

    Baryon Binding Energy in Sakai-Sugimoto Model

    Full text link
    The binding energy of baryon has been studied in the dual AdS5×S5AdS_5\times S^5 string theory with a black hole interior. In this picture baryon is constructed of a D5D_5 brane vertex wrapping on S5S^5 and NcN_c fundamental strings connected to it. Here, we calculate the baryon binding energy in Sakai-Sugimoto model with a D4/D8/D8ˉD_4/D_8/\bar{D_8} in which the supersymmetry is completely broken. Also we check the TT dependence of the baryon binding energy. We believe that this model represents an accurate description of baryons due to the existence of Chern-Simones coupling with the gauge field on the brane. We obtain an analytical expression for the baryon binding energy . In that case we plot the baryon binding energy in terms of radial coordinate. Then by using the binding energy diagram, we determine the stability range for baryon configuration. And also the position and energy of the stable equilibrium point is obtained by the corresponding diagram. Also we plot the baryon binding energy in terms of temperature and estimate a critical temperature in which the baryon would be dissociated.Comment: 14 pages, 1 fi

    QGP probes from a dynamical holographic model of AdS/QCD

    No full text
    Abstract In this paper, we employ the gauge/gravity duality to study some features of the quark–gluon plasma. For this purpose, we implement a holographic QCD model constructed from an Einstein–Maxwell-dilaton gravity at finite temperature and finite chemical potential. The model captures both the confinement and deconfinement phases of QCD and we use it to study the effect of temperature and chemical potential on a heavy quark moving through the plasma. We calculate the drag force, Langevin diffusion coefficients and also the jet quenching parameter, and our results align with other holographic QCD models and the experimental data

    Development and Analysis of a Novel Multi-Mode MPPT Technique with Fast and Efficient Performance for PMSG-Based Wind Energy Conversion Systems

    No full text
    Wind energy is one of the most promising renewable energy resources. Due to instantaneous variations of the wind speed, an appropriate Maximum Power Point Tracking (MPPT) method is necessary for maximizing the captured energy from the wind at different speeds. The most commonly used MPPT algorithms are Tip Speed Ratio (TSR), Power Signal Feedback (PSF), Optimal Torque Control (OTC) and Hill Climbing Search (HCS). Each of these algorithms has some advantages and also some major drawbacks. In this paper, a novel hybrid MPPT algorithm is proposed which modifies the conventional methods in a way that eliminates their drawbacks and yields an improved performance. This proposed algorithm is faster in tracking the maximum power point and provides a more accurate response with lower steady state error. Moreover, it presents a great performance under conditions with intensive wind speed variations. The studied Wind Energy Conversion System (WECS) consists of a Permanent Magnet Synchronous Generator (PMSG) connected to the dc link through a Pulse-Width Modulated (PWM) rectifier. The proposed algorithm and the conventional methods are applied to this WECS and their performances are compared using the simulation results. These results approve the satisfactory performance of the proposed algorithm and its notable advantages over the conventional methods
    corecore