5,915 research outputs found
Kinetics of non-ionic surfactant adsorption at a fluid-fluid interface from a micellar solution
The kinetics of non-ionic surfactant adsorption at a fluid-fluid interface
from a micellar solution is considered theoretically. Our model takes into
account the effect of micelle relaxation on the diffusion of the free
surfactant molecules. It is shown that non-ionic surfactants undergo either a
diffusion or a kinetically limited adsorption according to the characteristic
relaxation time of the micelles. This gives a new interpretation for the
observed dynamical surface tension of micellar solutions.Comment: 4 page
Combined scanning force microscopy and scanning tunneling spectroscopy of an electronic nano-circuit at very low temperature
We demonstrate the combination of scanning force microscopy and scanning
tunneling spectroscopy in a local probe microscope operating at very low
temperature (60 mK). This local probe uses a quartz tuning fork ensuring high
tunnel junction stability. We performed the spatially-resolved spectroscopic
study of a superconducting nano-circuit patterned on an insulating substrate.
Significant deviations from the BCS prediction are observed.Comment: 4 page
On the recurrence set of planar Markov Random Walks
In this paper, we investigate the properties of recurrent planar Markov
random walks. More precisely, we study the set of recurrent points with the use
of local limit theorems. The Nagaev-Guivarc'h spectral method provides several
examples for which these local limit theorems are satisfied as soon as the
(standard or non-standard) central limit theorem holds
Large scale EPR correlations and cosmic gravitational waves
We study how quantum correlations survive at large scales in spite of their
exposition to stochastic backgrounds of gravitational waves. We consider
Einstein-Podolski-Rosen (EPR) correlations built up on the polarizations of
photon pairs and evaluate how they are affected by the cosmic gravitational
wave background (CGWB). We evaluate the quantum decoherence of the EPR
correlations in terms of a reduction of the violation of the Bell inequality as
written by Clauser, Horne, Shimony and Holt (CHSH). We show that this
decoherence remains small and that EPR correlations can in principle survive up
to the largest cosmic scales.Comment: 5 figure
Spin Hall effect of Photons in a Static Gravitational Field
Starting from a Hamiltonian description of the photon within the set of
Bargmann-Wigner equations we derive new semiclassical equations of motion for
the photon propagating in static gravitational field. These equations which are
obtained in the representation diagonalizing the Hamiltonian at the order
, present the first order corrections to the geometrical optics. The
photon Hamiltonian shows a new kind of helicity-magnetotorsion coupling.
However, even for a torsionless space-time, photons do not follow the usual
null geodesic as a consequence of an anomalous velocity term. This term is
responsible for the gravitational birefringence phenomenon: photons with
distinct helicity follow different geodesics in a static gravitational field.Comment: 6 page
Resonances in one-dimensional Disordered Chain
We study the average density of resonances, is
defined in the complex energy plane and the distance from the real axes
determines the resonance width. We concentrate on strong disorder and derive
the asymptotic behavior of in the limit of small .Comment: latex, 1 eps figure, 9 pages; v2 - final version, published in the
JPhysA Special Issue Dedicated to the Physics of Non-Hermitian Operator
Helices at Interfaces
Helically coiled filaments are a frequent motif in nature. In situations
commonly encountered in experiments coiled helices are squeezed flat onto two
dimensional surfaces. Under such 2-D confinement helices form "squeelices" -
peculiar squeezed conformations often resembling looped waves, spirals or
circles. Using theory and Monte-Carlo simulations we illuminate here the
mechanics and the unusual statistical mechanics of confined helices and show
that their fluctuations can be understood in terms of moving and interacting
discrete particle-like entities - the "twist-kinks". We show that confined
filaments can thermally switch between discrete topological twist quantized
states, with some of the states exhibiting dramatically enhanced
circularization probability while others displaying surprising
hyperflexibility
Recommended from our members
Evidence for DNA-mediated nuclear compartmentalization distinct from phase separation.
RNA Polymerase II (Pol II) and transcription factors form concentrated hubs in cells via multivalent protein-protein interactions, often mediated by proteins with intrinsically disordered regions. During Herpes Simplex Virus infection, viral replication compartments (RCs) efficiently enrich host Pol II into membraneless domains, reminiscent of liquid-liquid phase separation. Despite sharing several properties with phase-separated condensates, we show that RCs operate via a distinct mechanism wherein unrestricted nonspecific protein-DNA interactions efficiently outcompete host chromatin, profoundly influencing the way DNA-binding proteins explore RCs. We find that the viral genome remains largely nucleosome-free, and this increase in accessibility allows Pol II and other DNA-binding proteins to repeatedly visit nearby DNA binding sites. This anisotropic behavior creates local accumulations of protein factors despite their unrestricted diffusion across RC boundaries. Our results reveal underappreciated consequences of nonspecific DNA binding in shaping gene activity, and suggest additional roles for chromatin in modulating nuclear function and organization
- âŠ