495 research outputs found
The Contribution of Network Organization and Integration to the Development of Cognitive Control
Cognitive control, which continues to mature throughout adolescence, is supported by the ability for well-defined organized brain networks to flexibly integrate information. However, the development of intrinsic brain network organization and its relationship to observed improvements in cognitive control are not well understood. In the present study, we used resting state functional magnetic resonance imaging (RS-fMRI), graph theory, the antisaccade task, and rigorous head motion control to characterize and relate developmental changes in network organization, connectivity strength, and integration to inhibitory control development. Subjects were 192 10–26-y-olds who were imaged during 5 min of rest. In contrast to initial studies, our results indicate that network organization is stable throughout adolescence. However, cross-network integration, predominantly of the cingulo-opercular/salience network, increased with age. Importantly, this increased integration of the cingulo-opercular/salience network significantly moderated the robust effect of age on the latency to initiate a correct inhibitory control response. These results provide compelling evidence that the transition to adult-level inhibitory control is dependent upon the refinement and strengthening of integration between specialized networks. Our findings support a novel, two-stage model of neural development, in which networks stabilize prior to adolescence and subsequently increase their integration to support the cross-domain incorporation of information processing critical for mature cognitive control
The formation, properties and impact of secondary organic aerosol: current and emerging issues
Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed
Design of a split Hopkinson pressure bar with partial lateral confinement
This paper presents the design of a modified split Hopkinson pressure bar (SHPB) where partial lateral con-
finement of the specimen is provided by the inertia of a fluid annulus contained in a long steel reservoir. In
contrast to unconfined testing, or a constant cell pressure applied before axial loading, lateral restraint is permitted
to develop throughout the axial loading: this enables the high-strain-rate shear behaviour of soils to be
characterised under conditions which are more representative of buried explosive events. A pressure transducer
located in the wall of the reservoir allows lateral stresses to be quantified, and a dispersion-correction
technique is used to provide accurate measurements of axial stress and strain. Preliminary numerical modelling
is utilised to inform the experimental design, and the capability of the apparatus is demonstrated with
specimen results for a dry quartz sand
Design and numerical assessment of a rapid-construction corrugated steel-concrete-steel protective structure
A protective structure should be sufficiently resilient to protect its occupants from the harmful effects of an impact or explosion. In many instances, protective structures are also required to be assembled quickly, and be cost-effective. Steel-concrete-steel (SCS) sandwich structures combine the benefits of steel; ductility and anti-scabbing, and concrete; energy absorption and rigidity. Despite these favourable characteristics, the performance of profiled-plate steel-concrete-steel structures under blast and impact loads has yet to be studied in detail. This article presents the results from a numerical study investigating the efficacy of a newly proposed profiled-plate arched steel-concrete-steel structure under the loading from an extremely near-field high explosive detonation. It is observed that as arch thickness (concrete infill depth) increases, a greater proportion of energy is absorbed through concrete crushing and a larger concrete mass is mobilised. It is shown that a 240 mm arch thickness is adequate to resist the blast load from a 5.76 kg TNT charge, therefore proving the suitability of the proposed protective structure
Observations from Preliminary Experiments on Spatial and Temporal Pressure Measurements from Near-Field Free Air Explosions
It is self-evident that a crucial step in analysing the performance of protective structures is to be able to accurately quantify the blast load arising from a high explosive detonation. For structures located near to the source of a high explosive detonation, the resulting pressure is extremely high in magnitude and highly non-uniform over the face of the target. There exists very little direct measurement of blast parameters in the nearfield, mainly attributed to the lack of instrumentation sufficiently robust to survive extreme loading events yet sensitive enough to capture salient features of the blast. Instead literature guidance is informed largely by early numerical analyses and parametric studies. Furthermore, the lack of an accurate, reliable data set has prevented subsequent numerical analyses from being validated against experimental trials. This paper presents an experimental methodology that has been developed in part to enable such experimental data to be gathered. The experimental apparatus comprises an array of Hopkinson pressure bars, fitted through holes in a target, with the loaded faces of the bars flush with the target face. Thus, the bars are exposed to the normally or obliquely reflected shocks from the impingement of the blast wave with the target. Pressure-time recordings are presented along with associated Arbitary-Langrangian-Eulerian modelling using the LS-DYNA explicit numerical code. Experimental results are corrected for the effects of dispersion of the propagating waves in the pressure bars, enabling accurate characterisation of the peak pressures and impulses from these loadings. The combined results are used to make comments on the mechanism of the pressure load for very near-field blast events
Benign thyroid disease and dietary factors in thyroid cancer: a case-control study in Kuwait
We conducted a population-based study of 313 case–control pairs in Kuwait to examine the aetiology of thyroid cancer, the second most common neoplasm among women in this and several other countries in the Gulf region. Among the demographic variables, individuals with 12+ years of education had a significantly reduced risk of thyroid cancer (OR=0.6; 95% CI: 0.3–0.9). The average age at diagnosis (s.d.) of thyroid cancer was 34.711 years in women and 3913.4 years in men. History of thyroid nodule was reported only by cases (n=34; 10.9%; lower 95% CI: 12.0); and goitre by 21 cases and four controls (OR=5.3; 95% CI: 1.8–15.3). There was no significant increase in risk with history of hypothyroidism (OR=1.8) or hyperthyroidism (OR=1.7). For any benign thyroid disease, the OR was 6.4 (95% CI: 3.4–12.0); and the population attributable risk was about 26% (95% CI: 21.1–30.9). Stepwise regression analysis showed that high consumption of processed fish products (OR=2.2; 95% CI: 1.6–3.0) fresh fish (OR=0.5; 95% CI: 0.4–0.7) and chicken (OR=1.7; 95% CI: 1.2–2.3) were independently associated with thyroid cancer with significant dose-response relationships. Among the thyroid cancer patients who reported high consumption of fish products, a large majority also reported high consumption of fresh fish (98%) and shellfish (68%). No clear association emerged with consumption of cruciferous vegetables. These data support the hypothesis that hyperplastic thyroid disease is strongly related to thyroid cancer; and that habitual high consumption of various seafoods may be relevant to the aetiology of thyroid cancer. The association with chicken consumption requires further study
A method for extracting calibrated volatility information from the FIGAERO-HR-ToF-CIMS and its experimental application
The Filter Inlet for Gases and AEROsols (FIGAERO) is an inlet specifically designed to be coupled with the Aerodyne High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (HR-ToF-CIMS). The FIGAERO-HR-ToF-CIMS provides simultaneous molecular information relating to both the gas- and particle-phase samples and has been used to extract vapour pressures (VPs) of the compounds desorbing from the filter whilst giving quantitative concentrations in the particle phase. However, such extraction of vapour pressures of the measured particle-phase components requires use of appropriate, well-defined, reference compounds. Vapour pressures for the homologous series of polyethylene glycols (PEG) ((H-(O-CH2CH2)n-OH) for n = 3 to n = 8), covering a range of vapour pressures (VP) (10-1 to 10-7 Pa) that are atmospherically relevant, have been shown to be reproduced well by a range of different techniques, including Knudsen Effusion Mass Spectrometry (KEMS). This is the first homologous series of compounds for which a number of vapour pressure measurement techniques have been found to be in agreement, indicating the utility as a calibration standard, providing an ideal set of benchmark compounds for accurate characterization of the FIGAERO for extracting vapour pressure of measured compounds in chambers and the real atmosphere. To demonstrate this, single-component and mixture vapour pressure measurements are made using two FIGAERO-HR-ToF-CIMS instruments based on a new calibration determined from the PEG series. VP values extracted from both instruments agree well with those measured by KEMS and reported values from literature, validating this approach for extracting VP data from the FIGAERO. This method is then applied to chamber measurements, and the vapour pressures of known products are estimated
Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols
Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.Research at the University of Cambridge was supported by a Marie Curie Intra-European fellowship (project no. 254319) and the ERC grant no. 279405. We thank the SAPHIR and TNA2012 team in Jülich for supporting our measurements and the support by EUROCHAMP2 contract no. 228335. The field-work was funded by ERC grant 227463 and the Academy of Finland Centre of Excellence (grants 1118615 and 272041) and by the Office of Science (BER), US Department of Energy via Biogenic Aerosols - Effects on Clouds and Climate (BAECC). European Union’s Horizon 2020 research and innovation programme under grant agreement no. 654109 and previously from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 262254. We thank the Met Office for use of the NAME model. S.C. thanks the UK Natural Environment Research Council for her studentship
The Gaussian graphical model in cross-sectional and time-series data
We discuss the Gaussian graphical model (GGM; an undirected network of
partial correlation coefficients) and detail its utility as an exploratory data
analysis tool. The GGM shows which variables predict one-another, allows for
sparse modeling of covariance structures, and may highlight potential causal
relationships between observed variables. We describe the utility in 3 kinds of
psychological datasets: datasets in which consecutive cases are assumed
independent (e.g., cross-sectional data), temporally ordered datasets (e.g., n
= 1 time series), and a mixture of the 2 (e.g., n > 1 time series). In
time-series analysis, the GGM can be used to model the residual structure of a
vector-autoregression analysis (VAR), also termed graphical VAR. Two network
models can then be obtained: a temporal network and a contemporaneous network.
When analyzing data from multiple subjects, a GGM can also be formed on the
covariance structure of stationary means---the between-subjects network. We
discuss the interpretation of these models and propose estimation methods to
obtain these networks, which we implement in the R packages graphicalVAR and
mlVAR. The methods are showcased in two empirical examples, and simulation
studies on these methods are included in the supplementary materials.Comment: Accepted pending revision in Multivariate Behavioral Researc
- …