4,327 research outputs found

    The Concepts of Reliability and Homogeneity

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67956/2/10.1177_001316445001000103.pd

    Stiffness and energy losses in cylindrically symmetric superconductor levitating systems

    Full text link
    Stiffness and hysteretic energy losses are calculated for a magnetically levitating system composed of a type-II superconductor and a permanent magnet when a small vibration is produced in the system. We consider a cylindrically symmetric configuration with only vertical movements and calculate the current profiles under the assumption of the critical state model. The calculations, based on magnetic energy minimization, take into account the demagnetization fields inside the superconductor and the actual shape of the applied field. The dependence of stiffness and hysteretic energy losses upon the different important parameters of the system such as the superconductor aspect ratio, the relative size of the superconductor-permanent magnet, and the critical current of the superconductor are all systematically studied. Finally, in view of the results, we provide some trends on how a system such as the one studied here could be designed in order to optimize both the stiffness and the hysteretic losses.Comment: 8 pages; 8 figure

    Microbiological influences on fracture surfaces of intact mudstone and the implications for geological disposal of radioactive waste

    Get PDF
    The significance of the potential impacts of microbial activity on the transport properties of host rocks for geological repositories is an area of active research. Most recent work has focused on granitic environments. This paper describes pilot studies investigating changes in transport properties that are produced by microbial activity in sedimentary rock environments in northern Japan. For the first time, these short experiments (39 days maximum) have shown that the denitrifying bacteria, Pseudomonas denitrificans, can survive and thrive when injected into flow-through column experiments containing fractured diatomaceous mudstone and synthetic groundwater under pressurized conditions. Although there were few significant changes in the fluid chemistry, changes in the permeability of the biotic column, which can be explained by the observed biofilm formation, were quantitatively monitored. These same methodologies could also be adapted to obtain information from cores originating from a variety of geological environments including oil reservoirs, aquifers and toxic waste disposal sites to provide an understanding of the impact of microbial activity on the transport of a range of solutes, such as groundwater contaminants and gases (e.g. injected carbon dioxide)

    Investigation of a Lomentospora prolificans case cluster with whole genome sequencing

    Get PDF
    Lomentospora prolificans has caused outbreaks in immunocompromised patients. We performed whole genome sequencing (WGS) on 4 L. prolificans isolates from infections occurring during an 8-month period in the haematology unit at Hospital 1., and 2 isolates from unrelated infections at Hospital 2., showing a high number of mutational differences (>10,000 single nucleotide polymorphisms) between L. prolificans isolates from Hospital 1. Novel typing of isolates by WGS did not demonstrate a single causative strain

    On a connection between factor analysis and multidimensional unfolding

    Full text link
    Given the preference ordering of each of a number of individuals over a set of stimuli, it is proposed that if the preference orderings are generated in a Euclidean space of r dimensions which can be recovered by unfolding the preference orderings, then a factor analysis of the correlations between individual's preference orderings will yield a space of r + 1 dimensions with the original r -space embedded in it, and the additional dimension will be one of social utility. The proposition is clearly shown to be satisfied by means of the Monte Carlo technique for both random and lattice stimuli in three dimensions and for two other examples with random stimuli in one and two dimensions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45708/1/11336_2005_Article_BF02289726.pd

    Bulk high-Tc superconductors with drilled holes: how to arrange the holes to maximize the trapped magnetic flux ?

    Full text link
    Drilling holes in a bulk high-Tc superconductor enhances the oxygen annealing and the heat exchange with the cooling liquid. However, drilling holes also reduces the amount of magnetic flux that can be trapped in the sample. In this paper, we use the Bean model to study the magnetization and the current line distribution in drilled samples, as a function of the hole positions. A single hole perturbs the critical current flow over an extended region that is bounded by a discontinuity line, where the direction of the current density changes abruptly. We demonstrate that the trapped magnetic flux is maximized if the center of each hole is positioned on one of the discontinuity lines produced by the neighbouring holes. For a cylindrical sample, we construct a polar triangular hole pattern that exploits this principle; in such a lattice, the trapped field is ~20% higher than in a squared lattice, for which the holes do not lie on discontinuity lines. This result indicates that one can simultaneously enhance the oxygen annealing, the heat transfer, and maximize the trapped field

    The Reliability of Test Discriminations

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66658/2/10.1177_001316445501500404.pd
    corecore