2,333 research outputs found
Thermal phase diagrams of columnar liquid crystals
In order to understand the possible sequence of transitions from the
disordered columnar phase to the helical phase in hexa(hexylthio)triphenylene
(HHTT), we study a three-dimensional planar model with octupolar interactions
inscribed on a triangular lattice of columns. We obtain thermal phase diagrams
using a mean-field approximation and Monte Carlo simulations. These two
approaches give similar results, namely, in the quasi one-dimensional regime,
as the temperature is lowered, the columns order with a linear polarization,
whereas helical phases develop at lower temperatures. The helicity patterns of
the helical phases are determined by the exact nature of the frustration in the
system, itself related to the octupolar nature of the molecules.Comment: 12 pages, 9 figures, ReVTe
Transport and magnetic properties in YBaCo2O5.45: Focus on the high-temperature transition
The electronic transport properties and the magnetic susceptibility were
measured in detail in . Close to the so-called metal-insulator
transition, strong effects of resistance relaxation, a clear thermal hysteresis
and a sudden increase of the resistance noise are observed. This is likely due
to the first order character of the transition and to the underlying phases
coexistence. Despite these out of equilibrium features, a positive and linear
magneto-resistance is also observed, possibly linked to the heterogeneity of
the state. From a magnetic point of view, the paramagnetic to ordered magnetic
state transition is observed using non linear susceptibilty. This transition
shows the characteristics of a continuous transition, and time dependent
effects can be linked with the dynamics of magnetic domains in presence of
disorder. Thus, when focusing on the order of the transitions, the electronic
one and the magnetic one can not be directly associated.Comment: accepted for publication in PR
Rhodium Doped Manganites : Ferromagnetism and Metallicity
The possibility to induce ferromagnetism and insulator to metal transitions
in small A site cation manganites Ln_{1-x}Ca_xMnO_3 by rhodium doping is shown
for the first time. Colossal magnetoresistance (CMR) properties are evidenced
for a large compositional range (0.35 \leq x < 0.60). The ability of rhodium to
induce such properties is compared to the results obtained by chromium and
ruthenium doping. Models are proposed to explain this behavior.Comment: 11 pages, 8 figure
Propagation on networks: an exact alternative perspective
By generating the specifics of a network structure only when needed
(on-the-fly), we derive a simple stochastic process that exactly models the
time evolution of susceptible-infectious dynamics on finite-size networks. The
small number of dynamical variables of this birth-death Markov process greatly
simplifies analytical calculations. We show how a dual analytical description,
treating large scale epidemics with a Gaussian approximations and small
outbreaks with a branching process, provides an accurate approximation of the
distribution even for rather small networks. The approach also offers important
computational advantages and generalizes to a vast class of systems.Comment: 8 pages, 4 figure
Field-Induced Magnetization Steps in Intermetallic Compounds and Manganese Oxides: The Martensitic Scenario
Field-induced magnetization jumps with similar characteristics are observed
at low temperature for the intermetallic germanide Gd5Ge4and the mixed-valent
manganite Pr0.6Ca0.4Mn0.96Ga0.04O3. We report that the field location -and even
the existence- of these jumps depends critically on the magnetic field sweep
rate used to record the data. It is proposed that, for both compounds, the
martensitic character of their antiferromagnetic-to-ferromagnetic transitions
is at the origin of the magnetization steps.Comment: 4 pages,4 figure
New electronic orderings observed in cobaltates under the influence of misfit periodicities
We study with ARPES the electronic structure of CoO2 slabs, stacked with
rock-salt (RS) layers exhibiting a different (misfit) periodicity. Fermi
Surfaces (FS) in phases with different doping and/or periodicities reveal the
influence of the RS potential on the electronic structure. We show that these
RS potentials are well ordered, even in incommensurate phases, where STM images
reveal broad stripes with width as large as 80\AA. The anomalous evolution of
the FS area at low dopings is consistent with the localization of a fraction of
the electrons. We propose that this is a new form of electronic ordering,
induced by the potential of the stacked layers (RS or Na in NaxCoO2) when the
FS becomes smaller than the Brillouin Zone of the stacked structure
Superconductivity and antiferromagnetism in a hard-core boson spin-1 model in two dimensions
A model of hard-core bosons and spin-1 sites with single-ion anisotropy is
proposed to approximately describe hole pairs moving in a background of
singlets and triplets with the aim of exploring the relationship between
superconductivity and antiferromagnetism. The properties of this model at zero
temperature were investigated using quantum Monte Carlo techniques. The most
important feature found is the suppression of superconductivity, as long range
coherence of preformed pairs, due to the presence of both antiferromagnetism
and excitations. Indications of charge ordered and other phases are
also discussed.Comment: One figure, one reference, adde
A shadowing problem in the detection of overlapping communities: lifting the resolution limit through a cascading procedure
Community detection is the process of assigning nodes and links in
significant communities (e.g. clusters, function modules) and its development
has led to a better understanding of complex networks. When applied to sizable
networks, we argue that most detection algorithms correctly identify prominent
communities, but fail to do so across multiple scales. As a result, a
significant fraction of the network is left uncharted. We show that this
problem stems from larger or denser communities overshadowing smaller or
sparser ones, and that this effect accounts for most of the undetected
communities and unassigned links. We propose a generic cascading approach to
community detection that circumvents the problem. Using real and artificial
network datasets with three widely used community detection algorithms, we show
how a simple cascading procedure allows for the detection of the missing
communities. This work highlights a new detection limit of community structure,
and we hope that our approach can inspire better community detection
algorithms.Comment: 14 pages, 12 figures + supporting information (5 pages, 6 tables, 3
figures
Investigation of 6TSWCNT by Cs-Corrected Transmission Electron Microscopy
Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 - July 30, 200
- …
