2,454 research outputs found

    System size and centrality dependence of charged hadron transverse momentum spectra in Au+Au and Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV

    Full text link
    We present transverse momentum distributions of charged hadrons produced in Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV. The spectra are measured for transverse momenta of 0.25 < p_T < 5.0 GeV/c at sqrt(s) = 62.4 GeV and 0.25 < p_T < 7.0 GeV/c at sqrt(s) = 200 GeV, in a pseudo-rapidity range of 0.2 < eta < 1.4. The nuclear modification factor R_AA is calculated relative to p+p data at both collision energies as a function of collision centrality. At a given collision energy and fractional cross-section, R_AA is observed to be systematically larger in Cu+Cu collisions compared to Au+Au. However, for the same number of participating nucleons, R_AA is essentially the same in both systems over the measured range of p_T, in spite of the significantly different geometries of the Cu+Cu and Au+Au systems.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    System Size, Energy and Centrality Dependence of Pseudorapidity Distributions of Charged Particles in Relativistic Heavy Ion Collisions

    Full text link
    We present the first measurements of the pseudorapidity distribution of primary charged particles in Cu+Cu collisions as a function of collision centrality and energy, \sqrtsnn = 22.4, 62.4 and 200 GeV, over a wide range of pseudorapidity, using the PHOBOS detector. Making a global comparison of Cu+Cu and Au+Au results, we find that the total number of produced charged particles and the rough shape (height and width) of the pseudorapidity distributions are determined by the number of nucleon participants. More detailed studies reveal that a more precise matching of the shape of the Cu+Cu and Au+Au pseudorapidity distributions over the full range of pseudorapidity occurs for the same Npart/2A value rather than the same Npart value. In other words, it is the collision geometry rather than just the number of nucleon participants that drives the detailed shape of the pseudorapidity distribution and its centrality dependence at RHIC energies.Comment: Submitted to Physical Review Letter

    Identified charged antiparticle to particle ratios near midrapidity in Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV

    Full text link
    Antiparticle to particle ratios for identified protons, kaons and pions at sqrt(s) = 62.4 and 200 GeV in Cu+Cu collisions are presented as a function of centrality for the midrapidity region of 0.2 < eta < 1.4. No strong dependence on centrality is observed. For the / ratio at ~ 0.51 GeV/c, we observe an average value of 0.50 +/- 0.003_(stat) +/- 0.04_(syst) and 0.77 +/- 0.008_(stat) +/- 0.05_(syst) for the 10% most central collisions of 62.4 and 200 GeV Cu+Cu, respectively. The values for all three particle species measured at sqrt(s) = 200 GeV are in agreement within systematic uncertainties with that seen in both heavier and lighter systems measured at the same RHIC energy. This indicates that system size does not appear to play a strong role in determining the midrapidity chemical freeze-out properties affecting the antiparticle to particle ratios of the three most abundant particle species produced in these collisions.Comment: 5 Pages, 4 figures Made changes to the figures to include the panel numbers. Slight changes to the text. Updated data points from other experiment

    Centrality dependence of charged hadron transverse momentum spectra in d+Au collisions at sqrt(s_NN) = 200 GeV

    Full text link
    We have measured transverse momentum distributions of charged hadrons produced in d+Au collisions at sqrt(s_NN) = 200 GeV. The spectra were obtained for transverse momenta 0.25 < p_T < 6.0 GeV/c, in a pseudorapidity range of 0.2 < eta < 1.4 in the deuteron direction. The evolution of the spectra with collision centrality is presented in comparison to p+pbarcollisions at the same collision energy. With increasing centrality, the yield at high transverse momenta increases more rapidly than the overall particle density, leading to a strong modification of the spectral shape. This change in spectral shape is qualitatively different from observations in Au+Au collisions at the same energy. The results provide important information for discriminating between different models for the suppression of high-p_T hadrons observed in Au+Au collisions.Comment: 5 pages, 4 figures, submitted to PR

    Cluster properties from two-particle angular correlations in p+p collisions at s\sqrt{s} = 200 and 410 GeV

    Full text link
    We present results on two-particle angular correlations in proton-proton collisions at center of mass energies of 200 and 410 GeV. The PHOBOS experiment at the Relativistic Heavy Ion Collider has a uniquely large coverage for charged particles, giving the opportunity to explore the correlations at both short- and long-range scales. At both energies, a complex two-dimensional correlation structure in Δη\Delta \eta and Δϕ\Delta \phi is observed. In the context of an independent cluster model of short-range correlations, the cluster size and its decay width are extracted from the two-particle pseudorapidity correlation function and compared with previous measurements in proton-proton and proton-antiproton collisions, as well as PYTHIA and HIJING predictions.Comment: 10 pages, 10 figures, submitted to Phys. Rev.

    Charged antiparticle to particle ratios near midrapidity in p+p collisions at sqrt(s_NN)=200 GeV

    Full text link
    The ratios of the yields of primary charged antiparticles to particles have been obtained for pions, kaons, and protons near midrapidity for p+p collisions at sqrt(s_NN) = 200 GeV. Ratios of =1.000 +/- 0.012 (stat.) +/- 0.019 (syst.), =0.93 +/- 0.05 (stat.) +/- 0.03 (syst.), and =0.85 +/- 0.04 (stat.) +/- 0.03 (syst.) have been measured. The reported values represent the ratio of the yields averaged over the rapidity range of 0.1<y_{pi}<1.3 and 0<y_{K,p}<0.8, and for transverse momenta of 0.1<p_T^{pi,K}<1.0 GeV/c and 0.3<p_T^{p}<1.0 GeV/c. Within the uncertainties, all three ratios are consistent with the values measured in d+Au collisions at the same energy. The data are compared to results from other collision systems and energies.Comment: 3 pages, 2 figures, 1 table, submitted to Phys. Rev.

    Elliptic Flow in Au+Au Collisions at RHIC

    Full text link
    Elliptic flow is an interesting probe of the dynamical evolution of the dense system formed in the ultrarelativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC). The elliptic flow dependences on transverse momentum, centrality, and pseudorapidity were measured using data collected by the PHOBOS detector, which offers a unique opportunity to study the azimuthal anisotropies of charged particles over a wide range of pseudorapidity. These measurements are presented, together with an overview of the analysis methods and a discussion of the results.Comment: Presented at Hot Quarks 2004; 7 pages, 6 figure

    Event-by-event fluctuations of azimuthal particle anisotropy in Au+Au collisions at sqrt(s_NN) = 200 GeV

    Full text link
    This paper presents the first measurement of event-by-event fluctuations of the elliptic flow parameter v_2 in Au+Au collisions at sqrt(s_NN) = 200GeV as a function of collision centrality. The relative non-statistical fluctuations of the v_2 parameter are found to be approximately 40%. The results, including contributions from event-by-event elliptic flow fluctuations and from azimuthal correlations that are unrelated to the reaction plane (non-flow correlations), establish an upper limit on the magnitude of underlying elliptic flow fluctuations. This limit is consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. These results provide important constraints on models of the initial state and hydrodynamic evolution of relativistic heavy ion collisions.Comment: 5 pages, 2 figures, Published in Phys. Rev. Lett

    Non-flow correlations and elliptic flow fluctuations in gold-gold collisions at sqrt(s_NN)= 200 GeV

    Full text link
    This paper presents results on event-by-event elliptic flow fluctuations in Au+Au collisions at sqrt(s_NN)=200Gev, where the contribution from non-flow correlations has been subtracted. An analysis method is introduced to measure non-flow correlations, relying on the assumption that non-flow correlations are most prominent at short ranges (Delta eta < 2). Assuming that non-flow correlations are of the order that is observed in p+p collisions for long range correlations (Delta eta > 2), relative elliptic flow fluctuations of approximately 30-40% are observed. These results are consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. It is found that the long range non-flow correlations in Au+Au collisions would have to be more than an order of magnitude stronger compared to the p+p data to lead to the observed azimuthal anisotropy fluctuations with no intrinsic elliptic flow fluctuations.Comment: 9 pages, 7 figures, Published in Phys. Rev.

    System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow

    Full text link
    This paper presents measurements of the elliptic flow of charged particles as a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and 200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider (RHIC). The elliptic flow in Cu-Cu collisions is found to be significant even for the most central events. For comparison with the Au-Au results, it is found that the detailed way in which the collision geometry (eccentricity) is estimated is of critical importance when scaling out system-size effects. A new form of eccentricity, called the participant eccentricity, is introduced which yields a scaled elliptic flow in the Cu-Cu system that has the same relative magnitude and qualitative features as that in the Au-Au system
    • …
    corecore