104 research outputs found
Casimir type effects for scalar fields interacting with material slabs
We study the field theoretical model of a scalar field in presence of spacial
inhomogeneities in form of one and two finite width mirrors (material slabs).
The interaction of the scalar field with the defect is described with
position-dependent mass term. For the single layer system we develop a rigorous
calculation method and derive explicitly the propagator of the theory, S-matrix
elements and the Casimir self-energy of the slab. Detailed investigation of
particular limits of self-energy is presented, and connection to know cases is
discussed. The calculation method is found applicable to the two mirrors case
as well. By means of it we derive the corresponding Casimir energy and analyze
it. For particular values of the parameters of the model the obtained results
recover the Lifshitz formula. We also propose a procedure to obtain
unambiguously the finite Casimir \textit{self}-energy of a single slab without
reference to any renormalizations. We hope that our approach can be applied to
calculation of Casimir self-energies in other demanded cases (such as
dielectric ball, etc.)Comment: 22 pages, 3 figures, published version, significant changes in
Section 4.
Faraday rotation in graphene
We study magneto--optical properties of monolayer graphene by means of
quantum field theory methods in the framework of the Dirac model. We reveal a
good agreement between the Dirac model and a recent experiment on giant Faraday
rotation in cyclotron resonance. We also predict other regimes when the effects
are well pronounced. The general dependence of the Faraday rotation and
absorption on various parameters of samples is revealed both for suspended and
epitaxial graphene.Comment: 10 pp; v2: typos corrected and references added, v3, v4: small
changes and more reference
Polarons as stable solitary wave solutions to the Dirac-Coulomb system
We consider solitary wave solutions to the Dirac--Coulomb system both from
physical and mathematical points of view. Fermions interacting with gravity in
the Newtonian limit are described by the model of Dirac fermions with the
Coulomb attraction. This model also appears in certain condensed matter systems
with emergent Dirac fermions interacting via optical phonons. In this model,
the classical soliton solutions of equations of motion describe the physical
objects that may be called polarons, in analogy to the solutions of the
Choquard equation. We develop analytical methods for the Dirac--Coulomb system,
showing that the no-node gap solitons for sufficiently small values of charge
are linearly (spectrally) stable.Comment: Latex, 26 page
BAIKAL experiment: status report
We review the present status of the Baikal Neutrino Project and present the
results obtained with the deep underwater neutrino telescope NT-200.Comment: 4 pages, 3 figures. Presented at TAUP 2001 (7th international
workshop on Topics in Astroparticle and Underground Physics), Sep. 2001,
Laboratori Nazionali del Gran Sasso, Assergi, Ital
The Lake Baikal neutrino experiment: selected results
We review the present status of the lake Baikal Neutrino Experiment and
present selected physical results gained with the consequetive stages of the
stepwise increasing detector: from NT-36 to NT-96. Results cover atmospheric
muons, neutrino events, very high energy neutrinos, search for neutrino events
from WIMP annihilation, search for magnetic monopoles and environmental
studies. We also describe an air Cherenkov array developed for the study of
angular resolution of NT-200.Comment: 25 pages, 12 figures. To appear in the Procrrdings of International
Conference on Non-Accelerator New Physics, June 28 - July 3, 1999, Dubna,
Russi
Baikal-GVD: status and prospects
Baikal-GVD is a next generation, kilometer-scale neutrino telescope under
construction in Lake Baikal. It is designed to detect astrophysical neutrino
fluxes at energies from a few TeV up to 100 PeV. GVD is formed by multi-megaton
subarrays (clusters). The array construction started in 2015 by deployment of a
reduced-size demonstration cluster named "Dubna". The first cluster in its
baseline configuration was deployed in 2016, the second in 2017 and the third
in 2018. The full scale GVD will be an array of ~10000 light sensors with an
instrumented volume of about 2 cubic km. The first phase (GVD-1) is planned to
be completed by 2020-2021. It will comprise 8 clusters with 2304 light sensors
in total. We describe the design of Baikal-GVD and present selected results
obtained in 2015-2017.Comment: 9 pages, 8 figures. Conference proceedings for QUARKS201
- …