40 research outputs found

    Orbital Decay of Supermassive Black Hole Binaries in Clumpy Multiphase Merger Remnants

    Full text link
    We simulate an equal-mass merger of two Milky Way-size galaxy discs with moderate gas fractions at parsec-scale resolution including a new model for radiative cooling and heating in a multi-phase medium, as well as star formation and feedback from supernovae. The two discs initially have a 2.6×106 M2.6\times10^6\mathrm{~M_{\odot}} supermassive black hole (SMBH) embedded in their centers. As the merger completes and the two galactic cores merge, the SMBHs form a a pair with a separation of a few hundred pc that gradually decays. Due to the stochastic nature of the system immediately following the merger, the orbital plane of the binary is significantly perturbed. Furthermore, owing to the strong starburst the gas from the central region is completely evacuated, requiring 10\sim10~Myr for a nuclear disc to rebuild. Most importantly, the clumpy nature of the interstellar medium has a major impact on the the dynamical evolution of the SMBH pair, which undergo gravitational encounters with massive gas clouds and stochastic torquing by both clouds and spiral modes in the disk. These effects combine to greatly delay the decay of the two SMBHs to separations of a few parsecs by nearly two orders of magnitude, 108\sim 10^8 yr, compared to previous work. In mergers of more gas-rich, clumpier galaxies at high redshift stochastic torques will be even more pronounced and potentially lead to stronger modulation of the orbital decay. This suggests that SMBH pairs at separations of several tens of parsecs should be relatively common at any redshift.Comment: submitted to MNRAS; Comments very welcom

    Validation of a method for the determination of the sensible-heat flux with Sodar data in free convection cases

    Get PDF
    A simple method to determine the value of the ground sensible-heat flux using Sodar data is presented and validated. The measurement of the variance of the wind velocity components gives us an estimate of the intensity of the atmospheric turbulence; the local value of variance of the vertical wind velocity s2w depends on the efficiency of thermal and mechanical turbulence production. The portion of the atmospheric boundary layer, where turbulent kinetic energy is prevalently produced by buoyancy forces, is characterised by profiles of s3w Oz and of (sensible-) heat flux which decrease linearly with height. The extrapolation to the ground of the former profile gives an estimate of the value of sensible-heat flux at the surface. The validation of the results is performed by comparison of the energy involved in the development of convective episodes calculated, over the same time interval, from sensible-heat flux at the surface with that derived from potential temperature profiles relative to two successive radio soundings. When perturbative processes like, for example, rise up of breezes, are absent, the estimates of energies are in excellent agreement, being the angular coefficient of regression line 1.01 and the linear correlation coefficient 0.93

    A multi-proxy reconstruction of environmental change in the vicinity of the North Bay outlet of pro-glacial Lake Algonquin

    Get PDF
    This is the author accepted manuscriptWe present a multi-proxy study of environmental conditions during and after the recessional phases of pro-glacial Lake Algonquin in the vicinity of the North Bay outlet, Great Lakes Basin. Data presented comes from a new sedimentary profile obtained from the Balsam Creek kettle lake c. 34km north-east of the city of North Bay. This site lay close to the northeast margin of the maximum extent of the post-Algonquin lake sequence, which drained through the Ottawa-Mattawa valley system. Our data are presented against a Bayesian age-depth model, supporting and extending regional understanding of vegetation succession in this part of north-east Ontario. The core profile provides a minimum age for the formation of the glacial outwash delta in which the kettle is set, as well as a tentative timing for the Payette (post-Algonquin) lake phase. We highlight two discrete intervals during the Early Holocene, with modelled mean ages of: 8475-8040 cal. BP (332-316cm) and 7645 cal. BP (286cm), when climatic aridity affected the growth of vegetation within the kettle vicinity. Association with volcanic activity is posited. Cryptotephra dating to 7660-7430 cal. BP (mean age: 7580 cal. BP) is chronologically and geochemically assigned to the Mazama climactic eruption, while an earlier ash accumulation 8710-7865 cal. BP is tentatively sourced to an unknown eruption also in the Cascades region of Oregon. Outside of these periods, the Balsam Creek sequence shows considerable habitat stability and a character akin to that seen at more southerly latitudes. On this evidence we propose that access to reliable resources within kettle features could have aided the initial colonisation of northern Ontario’s environmentally dynamic early post-glacial landscape

    Massive binary black holes in galactic nuclei and their path to coalescence

    Full text link
    Massive binary black holes form at the centre of galaxies that experience a merger episode. They are expected to coalesce into a larger black hole, following the emission of gravitational waves. Coalescing massive binary black holes are among the loudest sources of gravitational waves in the Universe, and the detection of these events is at the frontier of contemporary astrophysics. Understanding the black hole binary formation path and dynamics in galaxy mergers is therefore mandatory. A key question poses: during a merger, will the black holes descend over time on closer orbits, form a Keplerian binary and coalesce shortly after? Here we review progress on the fate of black holes in both major and minor mergers of galaxies, either gas-free or gas-rich, in smooth and clumpy circum-nuclear discs after a galactic merger, and in circum-binary discs present on the smallest scales inside the relic nucleus.Comment: Accepted for publication in Space Science Reviews. To appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher

    A Multi-Proxy Reconstruction of Environmental Change in the Vicinity of the North Bay Outlet of Pro-Glacial Lake Algonquin

    Get PDF
    We present a multi-proxy study of environmental conditions during and after the recessional phases of pro-glacial Lake Algonquin in the vicinity of the North Bay outlet, Great Lakes Basin. Data presented comes from a new sedimentary profile obtained from the Balsam Creek kettle lake c. 34 km north-east of the city of North Bay. This site lies close to the north-east margin of the maximum extent of the post-Algonquin lake sequence, which drained through the Ottawa-Mattawa valley system. Our data are presented against a Bayesian age-depth model, supporting and extending regional understanding of vegetation succession in this part of north-east Ontario. The core profile provides a minimum age for the formation of the glacial outwash delta in which the kettle is set, as well as tentative timing for the Payette (post-Algonquin) lake phase. We highlight two discrete intervals during the Early Holocene, with modelled mean ages of: 8475–8040 cal. BP (332–316 cm) and 7645 cal. BP (286 cm), when climatic aridity affected the growth of vegetation within the kettle vicinity. Association with volcanic activity is posited. Cryptotephra dating to 7660–7430 cal. BP (mean age: 7580 cal. BP) is chronologically and geochemically assigned to the Mazama climactic eruption, while an earlier ash accumulation 8710–7865 cal. BP is tentatively sourced to an unknown eruption also in the Cascades region of Oregon. Outside of these periods, the Balsam Creek sequence shows considerable habitat stability and a character akin to that seen at more southerly latitudes. On this evidence we propose that access to reliable resources within kettle features could have aided the initial colonisation of northern Ontario’s environmentally dynamic early post-glacial landscape

    Supermassive Black Hole Binaries: The Search Continues

    Full text link
    Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag

    The role of mergers in driving morphological transformation over cosmic time

    Get PDF
    Accepted for publication in MNRASUnderstanding the processes that trigger morphological transformation is central to understanding how and why the Universe transitions from being disc-dominated at early epochs to having the morphological mix that is observed today. We use Horizon-AGN, a cosmological hydrodynamical simulation, to perform a comprehensive study of the processes that drive morphological change in massive (M*/M ⊙ > 10 10) galaxies over cosmic time. We show that (1) essentially all the morphological evolution in galaxies that are spheroids at z = 0 is driven by mergers with mass ratios greater than 1: 10; (2) major mergers alone cannot produce today's spheroid population - minor mergers are responsible for a third of all morphological transformation over cosmic time and are its dominant driver after z ~ 1; (3) prograde mergers trigger milder morphological transformation than retrograde mergers - while both types of event produce similar morphological changes at z > 2, the average change due to retrograde mergers is around twice that due to their prograde counterparts at z ~ 0; (4) remnant morphology depends strongly on the gas fraction of a merger, with gas-rich mergers routinely re-growing discs; and (5) at a given stellar mass, discs do not exhibit drastically different merger histories from spheroids - disc survival in mergers is driven by acquisition of cold gas (via cosmological accretion and gas-rich interactions) and a preponderance of prograde mergers in their merger histories.Peer reviewedFinal Accepted Versio

    The Gaia-ESO Survey::Exploring the complex nature and origins of the Galactic bulge populations

    Get PDF
    Context. As observational evidence steadily accumulates, the nature of the Galactic bulge has proven to be rather complex: the structural, kinematic, and chemical analyses often lead to contradictory conclusions. The nature of the metal-rich bulge - and especially of the metal-poor bulge - and their relation with other Galactic components, still need to be firmly defined on the basis of statistically significant high-quality data samples. Aims. We used the fourth internal data release of the Gaia-ESO survey to characterize the bulge metallicity distribution function (MDF), magnesium abundance, spatial distribution, and correlation of these properties with kinematics. Moreover, the homogeneous sampling of the different Galactic populations provided by the Gaia-ESO survey allowed us to perform a comparison between the bulge, thin disk, and thick disk sequences in the [Mg/Fe] vs. [Fe/H] plane in order to constrain the extent of their eventual chemical similarities. Methods. We obtained spectroscopic data for ∼2500 red clump stars in 11 bulge fields, sampling the area -10° ≥ l ≥ +8° and -10° ≥ b ≥ -4° from the fourth internal data release of the Gaia-ESO survey. A sample of ∼6300 disk stars was also selected for comparison. Spectrophotometric distances computed via isochrone fitting allowed us to define a sample of stars likely located in the bulge region. Results. From a Gaussian mixture models (GMM) analysis, the bulge MDF is confirmed to be bimodal across the whole sampled area. The relative ratio between the two modes of the MDF changes as a function of b, with metal-poor stars dominating at high latitudes. The metal-rich stars exhibit bar-like kinematics and display a bimodality in their magnitude distribution, a feature which is tightly associated with the X-shape bulge. They overlap with the metal-rich end of the thin disk sequence in the [Mg/Fe] vs. [Fe/H] plane. On the other hand, metal-poor bulge stars have a more isotropic hot kinematics and do not participate in the X-shape bulge. Their Mg enhancement level and general shape in the [Mg/Fe] vs. [Fe/H] plane is comparable to that of the thick disk sequence. The position at which [Mg/Fe] starts to decrease with [Fe/H], called the "knee", is observed in the metal-poor bulge at [Fe/H]knee = -0:37 ± 0:09, being 0.06 dex higher than that of the thick disk. Although this difference is inside the error bars, it suggest a higher star formation rate (SFR) for the bulge than for the thick disk. We estimate an upper limit for this difference of Δ[Fe/H]knee = 0:24 dex. Finally, we present a chemical evolution model that suitably fits the whole bulge sequence by assuming a fast (<1 Gyr) intense burst of stellar formation that takes place at early epochs. Conclusions.We associate metal-rich stars with the bar boxy/peanut bulge formed as the product of secular evolution of the early thin disk. On the other hand, the metal-poor subpopulation might be the product of an early prompt dissipative collapse dominated by massive stars. Nevertheless, our results do not allow us to firmly rule out the possibility that these stars come from the secular evolution of the early thick disk. This is the first time that an analysis of the bulge MDF and α-abundances has been performed in a large area on the basis of a homogeneous, fully spectroscopic analysis of high-resolution, high S/N data

    Temperature dependence of a BGO-CsI(Tl) phoswich detector properties

    No full text
    We have studied the variations of the performances, and particularly the discrimination efficiency, of a BGO-CsI(Tl) phoswich detector in the temperature range 2.5–40°C. The scintillation decay time evaluation has been carried out by means of a double constant fraction discriminator and a time to amplitude converter on 1 μs shaped pulses. Good discrimination between BGO and CsI(Tl) events has been obtained over the whole temperature range, even though small efficiency variations are present because of the relative displacement of the acceptance window of the discriminator due to the decay time dependence on temperature. A criterium to minimize this effect, useful in particular for the BGO-CsI(Tl) phoswich, has been developed

    Orbital decay of supermassive black hole binaries in clumpy multiphase merger remnants

    No full text
    We simulate an equal-mass merger of two Milky Way-size galaxy discs with moderate gas fractions at parsec-scale resolution including a new model for radiative cooling and heating in a multiphase medium, as well as star formation and feedback from supernovae. The two discs initially have a 2.6 × 106M⊙ supermassive black hole (SMBH) embedded in their centres. As the merger completes and the two galactic cores merge, the SMBHs form a pair with a separation of a few hundred pc that gradually decays. Due to the stochastic nature of the system immediately following the merger, the orbital plane of the binary is significantly perturbed. Furthermore, owing to the strong starburst the gas from the central region is completely evacuated, requiring ~10 Myr for a nuclear disc to rebuild. Most importantly, the clumpy nature of the interstellar medium has a major impact on the dynamical evolution of the SMBH pair, which undergo gravitational encounters with massive gas clouds and stochastic torquing by both clouds and spiral modes in the disc. These effects combine to greatly delay the decay of the two SMBHs to separations of a few parsecs by nearly two orders of magnitude, ~108 yr, compared to previous work. In mergers of more gas-rich, clumpier galaxies at high redshift stochastic torques will be even more pronounced and potentially lead to stronger modulation of the orbital decay. This suggests that SMBH pairs at separations of several tens of parsecs should be relatively common at any redshift. © 2015 The Authors
    corecore