8,094 research outputs found

    Blood flow dynamics in patient specific arterial network in head and neck

    Get PDF
    This paper shows a steady simulation of blood flow in the major head and neck arteries as if they had rigid walls, using patient specific geometry and CFD software FLUENT R . The Artery geometry is obtained by CT–scan segmentation with the commercial software ScanIPTM. A cause and effect study with various Reynolds numbers, viscous models and blood fluid models is provided. Mesh independence is achieved through wall y+ and pressure gradient adaption. It was found, that a Newtonian fluid model is not appropriate for all geometry parts, therefore the non–Newtonian properties of blood are required for small vessel diameters and low Reynolds numbers. The k–! turbulence model is suitable for the whole Reynolds numbe

    Guest Artist - Storm Saulter - Portfolio

    Get PDF

    The genotype-phenotype relationship in multicellular pattern-generating models - the neglected role of pattern descriptors

    Get PDF
    Background: A deep understanding of what causes the phenotypic variation arising from biological patterning processes, cannot be claimed before we are able to recreate this variation by mathematical models capable of generating genotype-phenotype maps in a causally cohesive way. However, the concept of pattern in a multicellular context implies that what matters is not the state of every single cell, but certain emergent qualities of the total cell aggregate. Thus, in order to set up a genotype-phenotype map in such a spatiotemporal pattern setting one is actually forced to establish new pattern descriptors and derive their relations to parameters of the original model. A pattern descriptor is a variable that describes and quantifies a certain qualitative feature of the pattern, for example the degree to which certain macroscopic structures are present. There is today no general procedure for how to relate a set of patterns and their characteristic features to the functional relationships, parameter values and initial values of an original pattern-generating model. Here we present a new, generic approach for explorative analysis of complex patterning models which focuses on the essential pattern features and their relations to the model parameters. The approach is illustrated on an existing model for Delta-Notch lateral inhibition over a two-dimensional lattice. Results: By combining computer simulations according to a succession of statistical experimental designs, computer graphics, automatic image analysis, human sensory descriptive analysis and multivariate data modelling, we derive a pattern descriptor model of those macroscopic, emergent aspects of the patterns that we consider of interest. The pattern descriptor model relates the values of the new, dedicated pattern descriptors to the parameter values of the original model, for example by predicting the parameter values leading to particular patterns, and provides insights that would have been hard to obtain by traditional methods. Conclusion: The results suggest that our approach may qualify as a general procedure for how to discover and relate relevant features and characteristics of emergent patterns to the functional relationships, parameter values and initial values of an underlying pattern-generating mathematical model

    Maximal Accuracy and Minimal Disturbance in the Arthurs-Kelly Simultaneous Measurement Process

    Get PDF
    The accuracy of the Arthurs-Kelly model of a simultaneous measurement of position and momentum is analysed using concepts developed by Braginsky and Khalili in the context of measurements of a single quantum observable. A distinction is made between the errors of retrodiction and prediction. It is shown that the distribution of measured values coincides with the initial state Husimi function when the retrodictive accuracy is maximised, and that it is related to the final state anti-Husimi function (the P representation of quantum optics) when the predictive accuracy is maximised. The disturbance of the system by the measurement is also discussed. A class of minimally disturbing measurements is characterised. It is shown that the distribution of measured values then coincides with one of the smoothed Wigner functions described by Cartwright.Comment: 12 pages, 0 figures. AMS-Latex. Earlier version replaced with final published versio

    Spontaneous Synchrony Breaking

    Full text link
    Research on synchronization of coupled oscillators has helped explain how uniform behavior emerges in populations of non-uniform systems. But explaining how uniform populations engage in sustainable non-uniform synchronization may prove to be just as fascinating

    Exact Results for the Kuramoto Model with a Bimodal Frequency Distribution

    Full text link
    We analyze a large system of globally coupled phase oscillators whose natural frequencies are bimodally distributed. The dynamics of this system has been the subject of long-standing interest. In 1984 Kuramoto proposed several conjectures about its behavior; ten years later, Crawford obtained the first analytical results by means of a local center manifold calculation. Nevertheless, many questions have remained open, especially about the possibility of global bifurcations. Here we derive the system's complete stability diagram for the special case where the bimodal distribution consists of two equally weighted Lorentzians. Using an ansatz recently discovered by Ott and Antonsen, we show that in this case the infinite-dimensional problem reduces exactly to a flow in four dimensions. Depending on the parameters and initial conditions, the long-term dynamics evolves to one of three states: incoherence, where all the oscillators are desynchronized; partial synchrony, where a macroscopic group of phase-locked oscillators coexists with a sea of desynchronized ones; and a standing wave state, where two counter-rotating groups of phase-locked oscillators emerge. Analytical results are presented for the bifurcation boundaries between these states. Similar results are also obtained for the case in which the bimodal distribution is given by the sum of two Gaussians.Comment: 28 pages, 7 figures; submitted to Phys. Rev. E Added comment

    On the Hyperbolicity of Lorenz Renormalization

    Full text link
    We consider infinitely renormalizable Lorenz maps with real critical exponent α>1\alpha>1 and combinatorial type which is monotone and satisfies a long return condition. For these combinatorial types we prove the existence of periodic points of the renormalization operator, and that each map in the limit set of renormalization has an associated unstable manifold. An unstable manifold defines a family of Lorenz maps and we prove that each infinitely renormalizable combinatorial type (satisfying the above conditions) has a unique representative within such a family. We also prove that each infinitely renormalizable map has no wandering intervals and that the closure of the forward orbits of its critical values is a Cantor attractor of measure zero.Comment: 63 pages; 10 figure

    Approximate joint measurement of qubit observables through an Arthur-Kelly type model

    Full text link
    We consider joint measurement of two and three unsharp qubit observables through an Arthur-Kelly type joint measurement model for qubits. We investigate the effect of initial state of the detectors on the unsharpness of the measurement as well as the post-measurement state of the system. Particular emphasis is given on a physical understanding of the POVM to PVM transition in the model and entanglement between system and detectors.Two approaches for characterizing the unsharpness of the measurement and the resulting measurement uncertainty relations are considered.The corresponding measures of unsharpness are connected for the case where both the measurements are equally unsharp. The connection between the POVM elements and symmetries of the underlying Hamiltonian of the measurement interaction is made explicit and used to perform joint measurement in arbitrary directions. Finally in the case of three observables we derive a necessary condition for the approximate joint measurement and use it show the relative freedom available when the observables are non-orthogonal.Comment: 22 pages; Late
    • …
    corecore