8,094 research outputs found
Blood flow dynamics in patient specific arterial network in head and neck
This paper shows a steady simulation of blood flow in the major head and neck arteries as if they
had rigid walls, using patient specific geometry and CFD software FLUENT
R . The Artery geometry
is obtained by CT–scan segmentation with the commercial software ScanIPTM. A cause and
effect study with various Reynolds numbers, viscous models and blood fluid models is provided.
Mesh independence is achieved through wall y+ and pressure gradient adaption. It was found, that
a Newtonian fluid model is not appropriate for all geometry parts, therefore the non–Newtonian
properties of blood are required for small vessel diameters and low Reynolds numbers. The k–!
turbulence model is suitable for the whole Reynolds numbe
The genotype-phenotype relationship in multicellular pattern-generating models - the neglected role of pattern descriptors
Background: A deep understanding of what causes the phenotypic variation arising from biological patterning
processes, cannot be claimed before we are able to recreate this variation by mathematical models capable of
generating genotype-phenotype maps in a causally cohesive way. However, the concept of pattern in a
multicellular context implies that what matters is not the state of every single cell, but certain emergent qualities
of the total cell aggregate. Thus, in order to set up a genotype-phenotype map in such a spatiotemporal pattern
setting one is actually forced to establish new pattern descriptors and derive their relations to parameters of the
original model. A pattern descriptor is a variable that describes and quantifies a certain qualitative feature of the
pattern, for example the degree to which certain macroscopic structures are present. There is today no general
procedure for how to relate a set of patterns and their characteristic features to the functional relationships,
parameter values and initial values of an original pattern-generating model. Here we present a new, generic
approach for explorative analysis of complex patterning models which focuses on the essential pattern features
and their relations to the model parameters. The approach is illustrated on an existing model for Delta-Notch
lateral inhibition over a two-dimensional lattice.
Results: By combining computer simulations according to a succession of statistical experimental designs,
computer graphics, automatic image analysis, human sensory descriptive analysis and multivariate data modelling,
we derive a pattern descriptor model of those macroscopic, emergent aspects of the patterns that we consider
of interest. The pattern descriptor model relates the values of the new, dedicated pattern descriptors to the
parameter values of the original model, for example by predicting the parameter values leading to particular
patterns, and provides insights that would have been hard to obtain by traditional methods.
Conclusion: The results suggest that our approach may qualify as a general procedure for how to discover and
relate relevant features and characteristics of emergent patterns to the functional relationships, parameter values
and initial values of an underlying pattern-generating mathematical model
Maximal Accuracy and Minimal Disturbance in the Arthurs-Kelly Simultaneous Measurement Process
The accuracy of the Arthurs-Kelly model of a simultaneous measurement of
position and momentum is analysed using concepts developed by Braginsky and
Khalili in the context of measurements of a single quantum observable. A
distinction is made between the errors of retrodiction and prediction. It is
shown that the distribution of measured values coincides with the initial state
Husimi function when the retrodictive accuracy is maximised, and that it is
related to the final state anti-Husimi function (the P representation of
quantum optics) when the predictive accuracy is maximised. The disturbance of
the system by the measurement is also discussed. A class of minimally
disturbing measurements is characterised. It is shown that the distribution of
measured values then coincides with one of the smoothed Wigner functions
described by Cartwright.Comment: 12 pages, 0 figures. AMS-Latex. Earlier version replaced with final
published versio
Spontaneous Synchrony Breaking
Research on synchronization of coupled oscillators has helped explain how
uniform behavior emerges in populations of non-uniform systems. But explaining
how uniform populations engage in sustainable non-uniform synchronization may
prove to be just as fascinating
Exact Results for the Kuramoto Model with a Bimodal Frequency Distribution
We analyze a large system of globally coupled phase oscillators whose natural
frequencies are bimodally distributed. The dynamics of this system has been the
subject of long-standing interest. In 1984 Kuramoto proposed several
conjectures about its behavior; ten years later, Crawford obtained the first
analytical results by means of a local center manifold calculation.
Nevertheless, many questions have remained open, especially about the
possibility of global bifurcations. Here we derive the system's complete
stability diagram for the special case where the bimodal distribution consists
of two equally weighted Lorentzians. Using an ansatz recently discovered by Ott
and Antonsen, we show that in this case the infinite-dimensional problem
reduces exactly to a flow in four dimensions. Depending on the parameters and
initial conditions, the long-term dynamics evolves to one of three states:
incoherence, where all the oscillators are desynchronized; partial synchrony,
where a macroscopic group of phase-locked oscillators coexists with a sea of
desynchronized ones; and a standing wave state, where two counter-rotating
groups of phase-locked oscillators emerge. Analytical results are presented for
the bifurcation boundaries between these states. Similar results are also
obtained for the case in which the bimodal distribution is given by the sum of
two Gaussians.Comment: 28 pages, 7 figures; submitted to Phys. Rev. E Added comment
On the Hyperbolicity of Lorenz Renormalization
We consider infinitely renormalizable Lorenz maps with real critical exponent
and combinatorial type which is monotone and satisfies a long return
condition. For these combinatorial types we prove the existence of periodic
points of the renormalization operator, and that each map in the limit set of
renormalization has an associated unstable manifold. An unstable manifold
defines a family of Lorenz maps and we prove that each infinitely
renormalizable combinatorial type (satisfying the above conditions) has a
unique representative within such a family. We also prove that each infinitely
renormalizable map has no wandering intervals and that the closure of the
forward orbits of its critical values is a Cantor attractor of measure zero.Comment: 63 pages; 10 figure
Approximate joint measurement of qubit observables through an Arthur-Kelly type model
We consider joint measurement of two and three unsharp qubit observables
through an Arthur-Kelly type joint measurement model for qubits. We investigate
the effect of initial state of the detectors on the unsharpness of the
measurement as well as the post-measurement state of the system. Particular
emphasis is given on a physical understanding of the POVM to PVM transition in
the model and entanglement between system and detectors.Two approaches for
characterizing the unsharpness of the measurement and the resulting measurement
uncertainty relations are considered.The corresponding measures of unsharpness
are connected for the case where both the measurements are equally unsharp. The
connection between the POVM elements and symmetries of the underlying
Hamiltonian of the measurement interaction is made explicit and used to perform
joint measurement in arbitrary directions. Finally in the case of three
observables we derive a necessary condition for the approximate joint
measurement and use it show the relative freedom available when the observables
are non-orthogonal.Comment: 22 pages; Late
- …