1,657 research outputs found
A bivariate first order autoregressive time series model in exponential variables (BEAR (1))
A simple time series model for bivariate exponential variables having first-order auto-regressive structure is presented. The linear random coefficient difference equation model is an adaptation of the New Exponential Autoregressive model (NEAR (2)). The process is Markovian in the bivariate sense and has correlation structure analogous to that of the Gaussian AR(1) bivariate time series model. The model exhibits a full range of positive correlations and cross-correlations. With some modification in either the innovation or the random coefficients, the model admits some negative values for the cross- correlations. The marginal processes are shown to have correlation structure of ARMA (2,1) modelsPrepared for: Naval Postgraduate School
Monterey, CAhttp://archive.org/details/bivariatefirstor00dewaNAN
Barro's fertility equations: the robustness of the role of female education and income
Barro and Lee (1994) and Barro and Sala-i-Martin (1995) find that real per-capita GDP and both male and female education have important effects on fertility in their cross-country empirical studies. In order to assess the robustness of their results, their estimated models are subjected to specification and diagnostic testing, the effects on the model of using the improved Barro and Lee (1996) cross-country data on educational attainment of the population aged 15 and over are examined, and the different specifications used by Barro and Lee and by Barro and Sala-i-Martin compared. The results obtained suggest that their fertility equations do not perform well in terms of diagnostic testing, and are very sensitive to the use of different vintages of the educational attainment proxies and of the Summers-Heston cross-country income data. A robust explanation of fertility, to link with empirical growth equations, has, therefore, not yet been found; further work is required in this area
Coulomb plasmas in outer envelopes of neutron stars
Outer envelopes of neutron stars consist mostly of fully ionized, strongly
coupled Coulomb plasmas characterized by typical densities about 10^4-10^{11}
g/cc and temperatures about 10^4-10^9 K. Many neutron stars possess magnetic
fields about 10^{11}-10^{14} G. Here we briefly review recent theoretical
advances which allow one to calculate thermodynamic functions and electron
transport coefficients for such plasmas with an accuracy required for
theoretical interpretation of observations.Comment: 4 pages, 2 figures, latex2e using cpp2e.cls (included). Proc. PNP-10
Workshop, Greifswald, Germany, 4-9 Sept. 2000. Accepted for publication in
Contrib. Plasma Phys. 41 (2001) no. 2-
Lifetime Measurements in 120Xe
Lifetimes for the lowest three transitions in the nucleus Xe have
been measured using the Recoil Distance Technique. Our data indicate that the
lifetime for the transition is more than a factor of
two lower than the previously adopted value and is in keeping with more recent
measurements performed on this nucleus. The theoretical implications of this
discrepancy and the possible reason for the erroneous earlier results are
discussed. All measured lifetimes in Xe, as well as the systematics of
the lifetimes of the 2 states in Xe isotopes, are compared with
predictions of various models. The available data are best described by the
Fermion Dynamic Symmetry Model (FDSM).Comment: 9 pages, RevTeX, 3 figures with Postscript file available on request
at [email protected], [email protected]. Submitted to Phys.
Rev.
49Cr: Towards full spectroscopy up to 4 MeV
The nucleus 49Cr has been studied analysing gamma-gamma coincidences in the
reaction 46Ti(alpha,n)49Cr at the bombarding energy of 12 MeV. The level scheme
has been greatly extended at low excitation energy and several new lifetimes
have been determined by means of the Doppler Shift Attenuation Method.
Shell model calculations in the full pf configuration space reproduce well
negative-parity levels. Satisfactory agreement is obtained for positive parity
levels by extending the configuration space to include a nucleon-hole either in
the 1d3/2 or in the 2s1/2 orbitals.
A nearly one-to-one correspondence is found between experimental and
theoretical levels up to an excitation energy of 4 MeV.
Experimental data and shell model calculations are interpreted in terms of
the Nilsson diagram and the particle-rotor model, showing the strongly coupled
nature of the bands in this prolate nucleus. Nine values of K(pi) are proposed
for the levels observed in this experiment.
As a by-result it is shown that the values of the experimental magnetic
moments in 1f7/2 nuclei are well reproduced without quenching the nucleon
g-factors.Comment: 13 pages, 8 figure
Sedimentological evidence for pronounced glacial‐interglacial climate fluctuations in NE Tibet in the latest Pliocene to early Pleistocene
The intensification of Northern Hemisphere glaciation (iNHG) and uplift of the Tibetan Plateau have been argued to be among the main drivers of climate change in midlatitude Central Asia during the Pliocene/Pleistocene. While most proxy records that support this hypothesis are from regions outside the Tibetan Plateau (such as from the Chinese Loess Plateau), detailed paleoclimatic information for the plateau itself during that time has yet remained elusive. Here we present a temporally highly resolved (~500 years) sedimentological record from the Qaidam Basin situated on the northeastern Tibetan Plateau that shows pronounced glacial‐interglacial climate variability during the interval from 2.7 to 2.1 Ma. Glacial (interglacial) intervals are generally characterized by coarser (finer) grain size, minima (maxima) in organic matter content, and maxima (minima) in carbonate content. Comparison of our results with Earth's orbital parameters and proxy records from the Chinese Loess Plateau suggests that the observed climate fluctuations were mainly driven by changes in the Siberian High/East Asian winter monsoon system as a response to the iNHG. They are further proposed to be enhanced by the topography of the Tibetan Plateau and its impact on the position and intensity of the westerlies
Energy averages and fluctuations in the decay out of superdeformed bands
We derive analytic formulae for the energy average (including the energy
average of the fluctuation contribution) and variance of the intraband decay
intensity of a superdeformed band. Our results may be expressed in terms of
three dimensionless variables: , ,
and . Here is
the spreading width for the mixing of a superdeformed (SD) state with the
normally deformed (ND) states whose spin is the same as 's. The
have mean level spacing and mean electromagnetic decay width
whilst has electromagnetic decay width .
The average decay intensity may be expressed solely in terms of the variables
and or, analogously to statistical
nuclear reaction theory, in terms of the transmission coefficients and
describing transmission from the to the SD band via and
to lower ND states.
The variance of the decay intensity, in analogy with Ericson's theory of
cross section fluctuations depends on an additional variable, the correlation
length
\Gamma_N/(\Gamma_S+\Gamma^{\downarrow})=\frac{d}{2\pi}T_N/(\Gamma_S+\Gamma^{\d
ownarrow}). This suggests that analysis of an experimentally obtained variance
could yield the mean level spacing as does analysis of the cross section
autocorrelation function in compound nuclear reactions.
We compare our results with those of Gu and Weidenm\"uller.Comment: revtex4, 14 pages, 4 figures, to appear in Physical Review
Observation of isotonic symmetry for enhanced quadrupole collectivity in neutron-rich 62,64,66Fe isotopes at N=40
The transition rates for the 2_{1}^{+} states in 62,64,66Fe were studied
using the Recoil Distance Doppler-Shift technique applied to projectile Coulomb
excitation reactions. The deduced E2 strengths illustrate the enhanced
collectivity of the neutron-rich Fe isotopes up to N=40. The results are
interpreted by the generalized concept of valence proton symmetry which
describes the evolution of nuclear structure around N=40 as governed by the
number of valence protons with respect to Z~30. The deformation suggested by
the experimental data is reproduced by state-of-the-art shell calculations with
a new effective interaction developed for the fpgd valence space.Comment: 4 pages, 2 figure
- …