884 research outputs found

    Trade-off between quantum and thermal fluctuations in mirror coatings yields improved sensitivity of gravitational-wave interferometers

    Full text link
    We propose a simple way to improve the laser gravitational-wave detectors sensitivity by means of reduction of the number of reflective coating layers of the core optics mirrors. This effects in the proportional decrease of the coating thermal noise, the most notorious among the interferometers technical noise sources. The price for this is the increased quantum noise, as well as high requirements for the pump laser power and power at the beamsplitter. However, as far as these processes depend differently on the coating thickness, we demonstrate that a certain trade-off is possible, yielding a 20-30% gain (for diverse gravitational wave signal types and interferometer configurations), providing that feasible values of laser power and power on the beamsplitter are assumed.Comment: 11 pages, 4 figures, 4 table

    Quantum noise of non-ideal Sagnac speed meter interferometer with asymmetries

    Get PDF
    The speed meter concept has been identified as a technique that can potentially provide laser-interferometric measurements at a sensitivity level which surpasses the Standard Quantum Limit (SQL) over a broad frequency range. As with other sub-SQL measurement techniques, losses play a central role in speed meter interferometers and they ultimately determine the quantum noise limited sensitivity that can be achieved. So far in the literature, the quantum noise limited sensitivity has only been derived for lossless or lossy cases using certain approximations (for instance that the arm cavity round trip loss is small compared to the arm cavity mirror transmission). In this article we present a generalised, analytical treatment of losses in speed meters that allows accurate calculation of the quantum noise limited sensitivity of Sagnac speed meters with arm cavities. In addition, our analysis allows us to take into account potential imperfections in the interferometer such as an asymmetric beam splitter or differences of the reflectivities of the two arm cavity input mirrors. Finally,we use the examples of the proof-of-concept Sagnac speed meter currently under construction in Glasgow and a potential implementation of a Sagnac speed meter in the Einstein Telescope (ET) to illustrate how our findings affect Sagnac speed meters with meter- and kilometre-long baselines.Comment: 22 pages, 8 figures, 1 table, (minor corrections and changes made to text and figures in version 2

    Achieving ground state and enhancing entanglement by recovering information

    Get PDF
    For cavity-assisted optomechanical cooling experiments, it has been shown in the literature that the cavity bandwidth needs to be smaller than the mechanical frequency in order to achieve the quantum ground state of the mechanical oscillator, which is the so-called resolved-sideband or good-cavity limit. We provide a new but physically equivalent insight into the origin of such a limit: that is information loss due to a finite cavity bandwidth. With an optimal feedback control to recover those information, we can surpass the resolved-sideband limit and achieve the quantum ground state. Interestingly, recovering those information can also significantly enhance the optomechanical entanglement. Especially when the environmental temperature is high, the entanglement will either exist or vanish critically depending on whether information is recovered or not, which is a vivid example of a quantum eraser.Comment: 9 figures, 18 page

    To the practical design of the optical lever intracavity topology of gravitational-wave detectors

    Full text link
    The QND intracavity topologies of gravitational-wave detectors proposed several years ago allow, in principle, to obtain sensitivity significantly better than the Standard Quantum Limit using relatively small anount of optical pumping power. In this article we consider an improved more ``practical'' version of the optical lever intracavity scheme. It differs from the original version by the symmetry which allows to suppress influence of the input light amplitude fluctuation. In addition, it provides the means to inject optical pumping inside the scheme without increase of optical losses. We consider also sensitivity limitations imposed by the local meter which is the key element of the intracavity topologies. Two variants of the local meter are analyzed, which are based on the spectral variation measurement and on the Discrete Sampling Variation Measurement, correspondingly. The former one, while can not be considered as a candidate for a practical implementation, allows, in principle, to obtain the best sensitivity and thus can be considered as an ideal ``asymptotic case'' for all other schemes. The DSVM-based local meter can be considered as a realistic scheme but its sensitivity, unfortunately, is by far not so good just due to a couple of peculiar numeric factors specific for this scheme. From our point of view search of new methods of mechanical QND measurements probably based on improved DSVM scheme or which combine the local meter with the pondermotive squeezing technique, is necessary.Comment: 27 pages, 6 figure

    Preparing a mechanical oscillator in non-Gaussian quantum states

    Get PDF
    We propose a protocol for coherently transferring non-Gaussian quantum states from optical field to a mechanical oscillator. The open quantum dynamics and continuous-measurement process, which can not be treated by the stochastic-master-equation formalism, are studied by a new path-integral-based approach. We obtain an elegant relation between the quantum state of the mechanical oscillator and that of the optical field, which is valid for general linear quantum dynamics. We demonstrate the experimental feasibility of such protocol by considering the cases of both large-scale gravitational-wave detectors and small-scale cavity-assisted optomechanical devices.Comment: 4 pages, 3 figure

    Candidates for a possible third-generation gravitational wave detector: comparison of ring-Sagnac and sloshing-Sagnac speedmeter interferometers

    Get PDF
    Speedmeters are known to be quantum non-demolition devices and, by potentially providing sensitivity beyond the standard quantum limit, become interesting for third generation gravitational wave detectors. Here we introduce a new configuration, the sloshing-Sagnac interferometer, and compare it to the more established ring-Sagnac interferometer. The sloshing-Sagnac interferometer is designed to provide improved quantum noise limited sensitivity and lower coating thermal noise than standard position meter interferometers employed in current gravitational wave detectors. We compare the quantum noise limited sensitivity of the ring-Sagnac and the sloshing-Sagnac interferometers, in the frequency range, from 5 Hz to 100 Hz, where they provide the greatest potential benefit. We evaluate the improvement in terms of the unweighted noise reduction below the standard quantum limit, and by finding the range up to which binary black hole inspirals may be observed. The sloshing-Sagnac was found to give approximately similar or better sensitivity than the ring-Sagnac in all cases. We also show that by eliminating the requirement for maximally-reflecting cavity end mirrors with correspondingly-thick multi-layer coatings, coating noise can be reduced by a factor of approximately 2.2 compared to conventional interferometers

    QND measurements for future gravitational-wave detectors

    Full text link
    Second-generation interferometric gravitational-wave detectors will be operating at the Standard Quantum Limit, a sensitivity limitation set by the trade off between measurement accuracy and quantum back action, which is governed by the Heisenberg Uncertainty Principle. We review several schemes that allows the quantum noise of interferometers to surpass the Standard Quantum Limit significantly over a broad frequency band. Such schemes may be an important component of the design of third-generation detectors.Comment: 22 pages, 6 figures, 1 table; In version 2, more tutorial information on quantum noise in GW interferometer and several new items into Reference list were adde

    Design of a speed meter interferometer proof-of-principle experiment

    Get PDF
    The second generation of large scale interferometric gravitational wave detectors will be limited by quantum noise over a wide frequency range in their detection band. Further sensitivity improvements for future upgrades or new detectors beyond the second generation motivate the development of measurement schemes to mitigate the impact of quantum noise in these instruments. Two strands of development are being pursued to reach this goal, focusing both on modifications of the well-established Michelson detector configuration and development of different detector topologies. In this paper, we present the design of the world's first Sagnac speed meter interferometer which is currently being constructed at the University of Glasgow. With this proof-of-principle experiment we aim to demonstrate the theoretically predicted lower quantum noise in a Sagnac interferometer compared to an equivalent Michelson interferometer, to qualify Sagnac speed meters for further research towards an implementation in a future generation large scale gravitational wave detector, such as the planned Einstein Telescope observatory.Comment: Revised version: 16 pages, 6 figure

    Local-Oscillator Noise Coupling in Balanced Homodyne Readout for Advanced Gravitational Wave Detectors

    Get PDF
    The second generation of interferometric gravitational wave detectors are quickly approaching their design sensitivity. For the first time these detectors will become limited by quantum back-action noise. Several back-action evasion techniques have been proposed to further increase the detector sensitivity. Since most proposals rely on a flexible readout of the full amplitude- and phase-quadrature space of the output light field, balanced homodyne detection is generally expected to replace the currently used DC readout. Up to now, little investigation has been undertaken into how balanced homodyne detection can be successfully transferred from its ubiquitous application in table-top quantum optics experiments to large-scale interferometers with suspended optics. Here we derive implementation requirements with respect to local oscillator noise couplings and highlight potential issues with the example of the Glasgow Sagnac Speed Meter experiment, as well as for a future upgrade to the Advanced LIGO detectors.Comment: 7 pages, 5 figure
    • …
    corecore