257 research outputs found
Proactive and politically skilled professionals: What is the relationship with affective occupational commitment?
The aim of this study is to extend research on employee affective commitment in three ways: (1) instead of organizational commitment the focus is on occupational commitment; (2) the role of proactive personality on affective occupational commitment is examined; and (3) occupational satisfaction is examined as a mediator and political skills as moderator in the relationship between proactive personality and affective occupational commitment. Two connected studies, one in a hospital located in the private sector and one in a university located in the public sector, are carried out in Pakistan, drawing on a total sample of over 400 employees. The results show that proactive personality is positively related to affective occupational commitment, and that occupational satisfaction partly mediates the relationship between proactive personality and affective occupational commitment. No effect is found for a moderator effect of political skills in the relationship between proactive personality and affective occupational commitment. Political skills however moderate the relationship between proactive personality and affective organizational commitment
Design, recruitment, and retention of African-American smokers in a pharmacokinetic study
<p>Abstract</p> <p>Background</p> <p>African-Americans remain underrepresented in clinical research despite experiencing a higher burden of disease compared to all other ethnic groups in the United States. The purpose of this article is to describe the study design and discuss strategies used to recruit and retain African-American smokers in a pharmacokinetic study.</p> <p>Methods</p> <p>The parent study was designed to evaluate the differences in the steady-state concentrations of bupropion and its three principal metabolites between African-American menthol and non-menthol cigarette smokers. Study participation consisted of four visits at a General Clinical Research Center (GCRC) over six weeks. After meeting telephone eligibility requirements, phone-eligible participants underwent additional screening during the first two GCRC visits. The last two visits (pharmacokinetic study phase) required repeated blood draws using an intravenous catheter over the course of 12 hours.</p> <p>Results</p> <p>Five hundred and fifteen African-American smokers completed telephone screening; 187 were phone-eligible and 92 were scheduled for the first GCRC visit. Of the 81 who attended the first visit, 48 individuals were enrolled in the pharmacokinetic study, and a total of 40 individuals completed the study (83% retention rate).</p> <p>Conclusions</p> <p>Although recruitment of African-American smokers into a non-treatment, pharmacokinetic study poses challenges, retention is feasible. The results provide valuable information for investigators embarking on non-treatment laboratory-based studies among minority populations.</p
Design, baseline characteristics, and retention of African American light smokers into a randomized trial involving biological data
<p>Abstract</p> <p>Background</p> <p>African Americans experience significant tobacco-related health disparities despite the fact that over half of African American smokers are light smokers (use ≤10 cigarettes per day). African Americans have been under-represented in smoking cessation research, and few studies have evaluated treatment for light smokers. This paper describes the study design, measures, and baseline characteristics from <it>Kick It at Swope III </it>(KIS-III), the first treatment study of bupropion for African American light smokers.</p> <p>Methods</p> <p>Five hundred forty African American light smokers were randomly assigned to receive bupropion (150mg bid) (n = 270) or placebo (n = 270) for 7 weeks. All participants received written materials and health education counseling. Participants responded to survey items and provided blood samples for evaluation of phenotype and genotype of CYP2A6 and CYP2B6 enzymes involved in nicotine and bupropion metabolism. Primary outcome was cotinine-verified 7-day point prevalence smoking abstinence at Week 26 follow-up.</p> <p>Results</p> <p>Of 2,628 individuals screened, 540 were eligible, consented, and randomized to treatment. Participants had a mean age of 46.5 years and 66.1% were women. Participants smoked an average of 8.0 cigarettes per day, had a mean exhaled carbon monoxide of 16.4ppm (range 1-55) and a mean serum cotinine of 275.8ng/ml. The mean Fagerström Test for Nicotine Dependence was 3.2, and 72.2% of participants smoked within 30 minutes of waking. The average number of quit attempts in the past year was 3.7 and 24.2% reported using pharmacotherapy in their most recent quit attempt. Motivation and confidence to quit were high.</p> <p>Conclusion</p> <p>KIS-III is the first study designed to examine both nicotine and bupropion metabolism, evaluating CYP2A6 and CYP2B6 phenotype and genotype in conjunction with psychosocial factors, in the context of treatment of African American light smokers. Of 1629 smokers screened for study participation, only 18 (1.1%) were ineligible to participate in the study because they refused blood draws, demonstrating the feasibility of recruiting and enrolling African American light smokers into a clinical treatment trial involving biological data collection and genetic analyses. Future evaluation of individual factors associated with treatment outcome will contribute to advancing tailored tobacco use treatment with the goal of enhancing treatment and reducing health disparities for African American light smokers.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="URL">NCT00666978</a></p
Nuclear Receptor Rev-erb Alpha (Nr1d1) Functions in Concert with Nr2e3 to Regulate Transcriptional Networks in the Retina
The majority of diseases in the retina are caused by genetic mutations affecting the development and function of photoreceptor cells. The transcriptional networks directing these processes are regulated by genes such as nuclear hormone receptors. The nuclear hormone receptor gene Rev-erb alpha/Nr1d1 has been widely studied for its role in the circadian cycle and cell metabolism, however its role in the retina is unknown. In order to understand the role of Rev-erb alpha/Nr1d1 in the retina, we evaluated the effects of loss of Nr1d1 to the developing retina and its co-regulation with the photoreceptor-specific nuclear receptor gene Nr2e3 in the developing and mature retina. Knock-down of Nr1d1 expression in the developing retina results in pan-retinal spotting and reduced retinal function by electroretinogram. Our studies show that NR1D1 protein is co-expressed with NR2E3 in the outer neuroblastic layer of the developing mouse retina. In the adult retina, NR1D1 is expressed in the ganglion cell layer and is co-expressed with NR2E3 in the outer nuclear layer, within rods and cones. Several genes co-targeted by NR2E3 and NR1D1 were identified that include: Nr2c1, Recoverin, Rgr, Rarres2, Pde8a, and Nupr1. We examined the cyclic expression of Nr1d1 and Nr2e3 over a twenty-four hour period and observed that both nuclear receptors cycle in a similar manner. Taken together, these studies reveal a novel role for Nr1d1, in conjunction with its cofactor Nr2e3, in regulating transcriptional networks critical for photoreceptor development and function
Dosage Effects of Cohesin Regulatory Factor PDS5 on Mammalian Development: Implications for Cohesinopathies
Cornelia de Lange syndrome (CdLS), a disorder caused by mutations in cohesion proteins, is characterized by multisystem developmental abnormalities. PDS5, a cohesion protein, is important for proper chromosome segregation in lower organisms and has two homologues in vertebrates (PDS5A and PDS5B). Pds5B mutant mice have developmental abnormalities resembling CdLS; however the role of Pds5A in mammals and the association of PDS5 proteins with CdLS are unknown. To delineate genetic interactions between Pds5A and Pds5B and explore mechanisms underlying phenotypic variability, we generated Pds5A-deficient mice. Curiously, these mice exhibit multiple abnormalities that were previously observed in Pds5B-deficient mice, including cleft palate, skeletal patterning defects, growth retardation, congenital heart defects and delayed migration of enteric neuron precursors. They also frequently display renal agenesis, an abnormality not observed in Pds5B−/− mice. While Pds5A−/− and Pds5B−/− mice die at birth, embryos harboring 3 mutant Pds5 alleles die between E11.5 and E12.5 most likely of heart failure, indicating that total Pds5 gene dosage is critical for normal development. In addition, characterization of these compound homozygous-heterozygous mice revealed a severe abnormality in lens formation that does not occur in either Pds5A−/− or Pds5B−/− mice. We further identified a functional missense mutation (R1292Q) in the PDS5B DNA-binding domain in a familial case of CdLS, in which affected individuals also develop megacolon. This study shows that PDS5A and PDS5B functions other than those involving chromosomal dynamics are important for normal development, highlights the sensitivity of key developmental processes on PDS5 signaling, and provides mechanistic insights into how PDS5 mutations may lead to CdLS
An ALS-Linked Mutant SOD1 Produces a Locomotor Defect Associated with Aggregation and Synaptic Dysfunction When Expressed in Neurons of Caenorhabditis elegans
The nature of toxic effects exerted on neurons by misfolded proteins, occurring in a number of neurodegenerative diseases, is poorly understood. One approach to this problem is to measure effects when such proteins are expressed in heterologous neurons. We report on effects of an ALS-associated, misfolding-prone mutant human SOD1, G85R, when expressed in the neurons of Caenorhabditis elegans. Stable mutant transgenic animals, but not wild-type human SOD1 transgenics, exhibited a strong locomotor defect associated with the presence, specifically in mutant animals, of both soluble oligomers and insoluble aggregates of G85R protein. A whole-genome RNAi screen identified chaperones and other components whose deficiency increased aggregation and further diminished locomotion. The nature of the locomotor defect was investigated. Mutant animals were resistant to paralysis by the cholinesterase inhibitor aldicarb, while exhibiting normal sensitivity to the cholinergic agonist levamisole and normal muscle morphology. When fluorescently labeled presynaptic components were examined in the dorsal nerve cord, decreased numbers of puncta corresponding to neuromuscular junctions were observed in mutant animals and brightness was also diminished. At the EM level, mutant animals exhibited a reduced number of synaptic vesicles. Neurotoxicity in this system thus appears to be mediated by misfolded SOD1 and is exerted on synaptic vesicle biogenesis and/or trafficking
Analysis of Blood Stem Cell Activity and Cystatin Gene Expression in a Mouse Model Presenting a Chromosomal Deletion Encompassing Csta and Stfa2l1
The cystatin protein superfamily is characterized by the presence of conserved sequences that display cysteine protease inhibitory activity (e.g., towards cathepsins). Type 1 and 2 cystatins are encoded by 25 genes of which 23 are grouped in 2 clusters localized on mouse chromosomes 16 and 2. The expression and essential roles of most of these genes in mouse development and hematopoiesis remain poorly characterized. In this study, we describe a set of quantitative real-time PCR assays and a global expression profile of cystatin genes in normal mouse tissues. Benefiting from our collection of DelES embryonic stem cell clones harboring large chromosomal deletions (to be reported elsewhere), we selected a clone in which a 95-kb region of chromosome 16 is missing (Del16qB3Δ/+). In this particular clone, 2 cystatin genes, namely Csta and Stfa2l1 are absent along with 2 other genes (Fam162a, Ccdc58) and associated intergenic regions. From this line, we established a new homozygous mutant mouse model (Del16qB3Δ/16qB3Δ) to assess the in vivo biological functions of the 2 deleted cystatins. Stfa2l1 gene expression is high in wild-type fetal liver, bone marrow, and spleen, while Csta is ubiquitously expressed. Homozygous Del16qB3Δ/16qB3Δ animals are phenotypically normal, fertile, and not overtly susceptible to spontaneous or irradiation-induced tumor formation. The hematopoietic stem and progenitor cell activity in these mutant mice are also normal. Interestingly, quantitative real-time PCR expression profiling reveals a marked increase in the expression levels of Stfa2l1/Csta phylogenetically-related genes (Stfa1, Stfa2, and Stfa3) in Del16qB3Δ/16qB3Δ hematopoietic tissues, suggesting that these candidate genes might be contributing to compensatory mechanisms. Overall, this study presents an optimized approach to globally monitor cystatin gene expression as well as a new mouse model deficient in Stfa2l1/Csta genes, expanding the available tools to dissect cystatin roles under normal and pathological conditions
Identification of Mammalian Protein Quality Control Factors by High-Throughput Cellular Imaging
Protein Quality Control (PQC) pathways are essential to maintain the equilibrium between protein folding and the clearance of misfolded proteins. In order to discover novel human PQC factors, we developed a high-content, high-throughput cell-based assay to assess PQC activity. The assay is based on a fluorescently tagged, temperature sensitive PQC substrate and measures its degradation relative to a temperature insensitive internal control. In a targeted screen of 1591 siRNA genes involved in the Ubiquitin-Proteasome System (UPS) we identified 25 of the 33 genes encoding for 26S proteasome subunits and discovered several novel PQC factors. An unbiased genome-wide siRNA screen revealed the protein translation machinery, and in particular the EIF3 translation initiation complex, as a novel key modulator of misfolded protein stability. These results represent a comprehensive unbiased survey of human PQC components and establish an experimental tool for the discovery of genes that are required for the degradation of misfolded proteins under conditions of proteotoxic stress
The Lid Domain of Caenorhabditis elegans Hsc70 Influences ATP Turnover, Cofactor Binding and Protein Folding Activity
Hsc70 is a conserved ATP-dependent molecular chaperone, which utilizes the energy of ATP hydrolysis to alter the folding state of its client proteins. In contrast to the Hsc70 systems of bacteria, yeast and humans, the Hsc70 system of C. elegans (CeHsc70) has not been studied to date
An Induced Mutation in Tomato eIF4E Leads to Immunity to Two Potyviruses
BACKGROUND: The characterization of natural recessive resistance genes and Arabidopsis virus-resistant mutants have implicated translation initiation factors of the eIF4E and eIF4G families as susceptibility factors required for virus infection and resistance function. METHODOLOGY/PRINCIPAL FINDINGS: To investigate further the role of translation initiation factors in virus resistance we set up a TILLING platform in tomato, cloned genes encoding for translation initiation factors eIF4E and eIF4G and screened for induced mutations that lead to virus resistance. A splicing mutant of the eukaryotic translation initiation factor, S.l_eIF4E1 G1485A, was identified and characterized with respect to cap binding activity and resistance spectrum. Molecular analysis of the transcript of the mutant form showed that both the second and the third exons were miss-spliced, leading to a truncated mRNA. The resulting truncated eIF4E1 protein is also impaired in cap-binding activity. The mutant line had no growth defect, likely because of functional redundancy with others eIF4E isoforms. When infected with different potyviruses, the mutant line was immune to two strains of Potato virus Y and Pepper mottle virus and susceptible to Tobacco each virus. CONCLUSIONS/SIGNIFICANCE: Mutation analysis of translation initiation factors shows that translation initiation factors of the eIF4E family are determinants of plant susceptibility to RNA viruses and viruses have adopted strategies to use different isoforms. This work also demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. We have also developed a complete tool that can be used for both forward and reverse genetics in tomato, for both basic science and crop improvement. By opening it to the community, we hope to fulfill the expectations of both crop breeders and scientists who are using tomato as their model of study
- …