99 research outputs found

    Measurement and modeling of the multiwavelength optical properties of uncoated flame-generated soot

    Get PDF
    Optical properties of flame-generated black carbon (BC) containing soot particles were quantified at multiple wavelengths for particles produced using two different flames: a methane diffusion flame and an ethylene premixed flame. Measurements were made for (i) nascent soot particles, (ii) thermally denuded nascent particles, and (iii) particles that were coated and then thermally denuded, leading to the collapse of the initially lacy, fractal-like morphology. The measured mass absorption coefficients (MACs) depended on soot maturity and generation but were similar between flames for similar conditions. For mature soot, here corresponding to particles with volume-equivalent diameters \u3e∼160 nm, the MAC and absorption Ångström exponent (AAE) values were independent of particle collapse while the single-scatter albedo increased. The MAC values for these larger particles were also size-independent. The mean MAC value at 532 nm for larger particles was 9.1±1.1 m2 g−1, about 17 % higher than that recommended by Bond and Bergstrom (2006), and the AAE was close to unity. Effective, theory-specific complex refractive index (RI) values are derived from the observations with two widely used methods: Lorenz–Mie theory and the Rayleigh–Debye–Gans (RDG) approximation. Mie theory systematically underpredicts the observed absorption cross sections at all wavelengths for larger particles (with x\u3e0.9) independent of the complex RI used, while RDG provides good agreement. (The dimensionless size parameter x=πdp/λ, where dp is particle diameter and λ is wavelength.) Importantly, this implies that the use of Mie theory within air quality and climate models, as is common, likely leads to underpredictions in the absorption by BC, with the extent of underprediction depending on the assumed BC size distribution and complex RI used. We suggest that it is more appropriate to assume a constant, size-independent (but wavelength-specific) MAC to represent absorption by uncoated BC particles within models

    Nitazoxanide Stimulates Autophagy and Inhibits mTORC1 Signaling and Intracellular Proliferation of Mycobacterium tuberculosis

    Get PDF
    Tuberculosis, caused by Mycobacterium tuberculosis infection, is a major cause of morbidity and mortality in the world today. M. tuberculosis hijacks the phagosome-lysosome trafficking pathway to escape clearance from infected macrophages. There is increasing evidence that manipulation of autophagy, a regulated catabolic trafficking pathway, can enhance killing of M. tuberculosis. Therefore, pharmacological agents that induce autophagy could be important in combating tuberculosis. We report that the antiprotozoal drug nitazoxanide and its active metabolite tizoxanide strongly stimulate autophagy and inhibit signaling by mTORC1, a major negative regulator of autophagy. Analysis of 16 nitazoxanide analogues reveals similar strict structural requirements for activity in autophagosome induction, EGFP-LC3 processing and mTORC1 inhibition. Nitazoxanide can inhibit M. tuberculosis proliferation in vitro. Here we show that it inhibits M. tuberculosis proliferation more potently in infected human THP-1 cells and peripheral monocytes. We identify the human quinone oxidoreductase NQO1 as a nitazoxanide target and propose, based on experiments with cells expressing NQO1 or not, that NQO1 inhibition is partly responsible for mTORC1 inhibition and enhanced autophagy. The dual action of nitazoxanide on both the bacterium and the host cell response to infection may lead to improved tuberculosis treatment

    A Daphnane Diterpenoid Isolated from Wikstroemia polyantha Induces an Inflammatory Response and Modulates miRNA Activity

    Get PDF
    MicroRNAs (miRNAs) are endogenously expressed single-stranded ∼21–23 nucleotide RNAs that inhibit gene expression post-transcriptionally by binding imperfectly to elements usually within the 3′untranslated region (3′UTR) of mRNAs. Small interfering RNAs (siRNAs) mediate site-specific cleavage by binding with perfect complementarity to RNA. Here, a cell-based miRNA reporter system was developed to screen for compounds from marine and plant extracts that inhibit miRNA or siRNA activity. The daphnane diterpenoid genkwanine M (GENK) isolated from the plant Wikstroemia polyantha induces an early inflammatory response and can moderately inhibit miR-122 activity in the liver Huh-7 cell line. GENK does not alter miR-122 levels nor does it directly inhibit siRNA activity in an in vitro cleavage assay. Finally, we demonstrate that GENK can inhibit HCV infection in Huh-7 cells. In summary, the development of the cell-based miRNA sensor system should prove useful in identifying compounds that affect miRNA/siRNA activity

    Adherence issues related to sublingual immunotherapy as perceived by allergists

    Get PDF
    Objectives: Sublingual immunotherapy (SLIT) is a viable alternative to subcutaneous immunotherapy to treat allergic rhinitis and asthma, and is widely used in clinical practice in many European countries. The clinical efficacy of SLIT has been established in a number of clinical trials and meta-analyses. However, because SLIT is self-administered by patients without medical supervision, the degree of patient adherence with treatment is still a concern. The objective of this study was to evaluate the perception by allergists of issues related to SLIT adherence. Methods: We performed a questionnaire-based survey of 296 Italian allergists, based on the adherence issues known from previous studies. The perception of importance of each item was assessed by a VAS scale ranging from 0 to 10. Results: Patient perception of clinical efficacy was considered the most important factor (ranked 1 by 54% of allergists), followed by the possibility of reimbursement (ranked 1 by 34%), and by the absence of side effects (ranked 1 by 21%). Patient education, regular follow-up, and ease of use of SLIT were ranked first by less than 20% of allergists. Conclusion: These findings indicate that clinical efficacy, cost, and side effects are perceived as the major issues influencing patient adherence to SLIT, and that further improvement of adherence is likely to be achieved by improving the patient information provided by prescribers. © 2010 Scurati et al, publisher and licensee Dove Medical Press Ltd

    Establishing the impact of model surfactants on cloud condensation nuclei activity of sea spray aerosol mimics

    No full text
    Surface-active compounds present in aerosols can increase their cloud condensation nuclei (CCN) activation efficiency by reducing the surface tension (σ ) in the growing droplets. However, the importance of this effect is poorly constrained by measurements. Here we present estimates of droplet surface tension near the point of activation derived from direct measurement of droplet diameters using a continuous flow streamwise thermal gradient chamber (CFSTGC). The experiments used sea spray aerosol (SSA) mimics composed of NaCl coated by varying amounts of (i) oleic acid, palmitic acid or myristic acid, (ii) mixtures of palmitic acid and oleic acid, and (iii) oxidized oleic acid. Significant reductions in σ relative to that for pure water were observed for these mimics at relative humidity (RH) near activation (∼99.9%) when the coating was sufficiently thick. The calculated surface pressure (Ï€ Combining double low line σ H2O - σ observed) values for a given organic compound or mixture collapse onto one curve when plotted as a function of molecular area for different NaCl seed sizes and measured RH. The observed critical molecular area (A 0) for oleic acid determined from droplet growth was similar to that from experiments conducted using macroscopic solutions in a Langmuir trough. However, the observations presented here suggest that oleic acid in microscopic droplets may exhibit larger values during monolayer compression. For myristic acid, the observed A 0 compared well to macroscopic experiments on a fresh subphase, for which dissolution has an important impact. A significant kinetic limitation to water uptake was observed for NaCl particles coated with pure palmitic acid, likely as a result of palmitic acid (with coating thicknesses ranging from 67 to 132nm) being able to form a solid film. However, for binary palmitic-acid-oleic-acid mixtures there was no evidence of a kinetic limitation to water uptake. Oxidation of oleic acid had a minor impact on the magnitude of the surface tension reductions observed, potentially leading to a slight reduction in the effect compared to pure oleic acid. A CCN counter was also used to assess the impact on critical supersaturations of the substantial σ reductions observed at very high RH. For the fatty-acid-coated NaCl particles, when the organic fraction (μ org) was >0.90 small depressions in critical supersaturation were observed. However, when μ org <0.90 the impact on critical supersaturation was negligible. Thus, for the fatty acids considered here, the substantial σ reductions observed at high RH values just below activation have limited impact on the ultimate critical supersaturation. A surface film model is used to establish the properties that surface-active organic molecules must have if they are to ultimately have a substantial impact on the activation efficiency of SSA. To influence activation, the average properties of surface-active marine-derived organic molecules must differ substantially from the long-chain fatty acids examined, having either smaller molecular volumes or larger molecular areas. The model results also indicate that organic-compound-driven surface tension depression can serve to buffer the critical supersaturation against changes to the organic-to-salt ratio in particles in which the organic fraction is sufficiently large

    A Sequence Selection Bound for the Capacity of the Nonlinear Fiber Channel

    No full text
    A novel technique to optimize the input distribution and compute a lower bound for the capacity of the nonlinear optical fiber channel is proposed. The technique improves previous bounds obtained with the additive white Gaussian noise decoding metric
    corecore