288 research outputs found

    On the massless contributions to the vacuum polarization of heavy quarks

    Get PDF
    Recently Groote and Pivovarov have given notice of a possible fault in the use of sum rules involving two-point correlation functions to extract information on heavy quark parameters, due to the presence of massless contributions that invalidate the construction of moments of the spectral densities. Here we show how to circumvent this problem through a new definition of the moments, providing an infrared safe and consistent procedure.Comment: 1+9 pages, 3 figures. Discussion on QCD sum rules applications added. Conclusions unchanged. Version to be published in Journal of Physics

    Multichannel parametrization of \pi N scattering amplitudes and extraction of resonance parameters

    Full text link
    We present results of a new multichannel partial-wave analysis for \pi N scattering in the c.m. energy range 1080 to 2100 MeV. This work explicitly includes \eta N and K \Lambda channels and the single pion photoproduction channel. Resonance parameters were extracted by fitting partial-wave amplitudes from all considered channels using a multichannel parametrization that is consistent with S-matrix unitarity. The resonance parameters so obtained are compared to predictions of quark models

    Effective boost and "point-form" approach

    Get PDF
    Triangle Feynman diagrams can be considered as describing form factors of states bound by a zero-range interaction. These form factors are calculated for scalar particles and compared to point-form and non-relativistic results. By examining the expressions of the complete calculation in different frames, we obtain an effective boost transformation which can be compared to the relativistic kinematical one underlying the present point-form calculations, as well as to the Galilean boost. The analytic expressions obtained in this simple model allow a qualitative check of certain results obtained in similar studies. In particular, a mismatch is pointed out between recent practical applications of the point-form approach and the one originally proposed by Dirac.Comment: revised version as accepted for publicatio

    Field diffeomorphisms and the algebraic structure of perturbative expansions

    Get PDF
    We consider field diffeomorphisms in the context of real scalar field theories. Starting from free field theories we apply non-linear field diffeomorphisms to the fields and study the perturbative expansion for the transformed theories. We find that tree level amplitudes for the transformed fields must satisfy BCFW type recursion relations for the S-matrix to remain trivial. For the massless field theory these relations continue to hold in loop computations. In the massive field theory the situation is more subtle. A necessary condition for the Feynman rules to respect the maximal ideal and co-ideal defined by the core Hopf algebra of the transformed theory is that upon renormalization all massive tadpole integrals (defined as all integrals independent of the kinematics of external momenta) are mapped to zero.Comment: 8 pages, 2 figure

    Regularity of squarefree monomial ideals

    Full text link
    We survey a number of recent studies of the Castelnuovo-Mumford regularity of squarefree monomial ideals. Our focus is on bounds and exact values for the regularity in terms of combinatorial data from associated simplicial complexes and/or hypergraphs.Comment: 23 pages; survey paper; minor changes in V.

    Equivariant Poincar\'e series of filtrations and topology

    Full text link
    Earlier, for an action of a finite group GG on a germ of an analytic variety, an equivariant GG-Poincar\'e series of a multi-index filtration in the ring of germs of functions on the variety was defined as an element of the Grothendieck ring of GG-sets with an additional structure. We discuss to which extend the GG-Poincar\'e series of a filtration defined by a set of curve or divisorial valuations on the ring of germs of analytic functions in two variables determines the (equivariant) topology of the curve or of the set of divisors

    A consistent derivation of the quark--antiquark and three quark potentials in a Wilson loop context

    Full text link
    In this paper we give a new derivation of the quark-antiquark potential in the Wilson loop context. This makes more explicit the approximations involved and enables an immediate extension to the three-quark case. In the qq‟q\overline{q} case we find the same semirelativistic potential obtained in preceding papers but for a question of ordering. In the 3q3q case we find a spin dependent potential identical to that already derived in the literature from the ad hoc and non correct assumption of scalar confinement. Furthermore we obtain the correct form of the spin independent potential up to the 1/m21/m^2 order.Comment: 30 pages, Revtex (3 figures available as hard copies only), IFUM 452/F

    Isospin splitting in heavy baryons and mesons

    Full text link
    A recent general analysis of light-baryon isospin splittings is updated and extended to charmed baryons. The measured Σc\Sigma_c and Ξc\Xi_c splittings stand out as being difficult to understand in terms of two-body forces alone. We also discuss heavy-light mesons; though the framework here is necessarily less general, we nevertheless obtain some predictions that are not strongly model-dependent.Comment: 12 pages REVTEX 3, plus 4 uuencoded ps figures, CMU-HEP93-

    The Rotation Average in Lightcone Time-Ordered Perturbation Theory

    Get PDF
    We present a rotation average of the two-body scattering amplitude in the lightcone time(τ\tau)-ordered perturbation theory. Using a rotation average procedure, we show that the contribution of individual time-ordered diagram can be quantified in a Lorentz invariant way. The number of time-ordered diagrams can also be reduced by half if the masses of two bodies are same. In the numerical example of ϕ3\phi^{3} theory, we find that the higher Fock-state contribution is quite small in the lightcone quantization.Comment: 25 pages, REVTeX, epsf.sty, 69 eps file

    Electromagnetic Meson Form Factors in the Salpeter Model

    Get PDF
    We present a covariant scheme to calculate mesonic transitions in the framework of the Salpeter equation for qqˉq\bar{q}-states. The full Bethe Salpeter amplitudes are reconstructed from equal time amplitudes which were obtained in a previous paper\cite{Mue} by solving the Salpeter equation for a confining plus an instanton induced interaction. This method is applied to calculate electromagnetic form factors and decay widths of low lying pseudoscalar and vector mesons including predictions for CEBAF experiments. We also describe the momentum transfer dependence for the processes π0,η,ηâ€Č→γγ∗\pi^0,\eta,\eta'\rightarrow\gamma\gamma^*.Comment: 22 pages including 10 figure
    • 

    corecore