927 research outputs found

    A new approach to modelling impacts on rubble pile asteroid simulants

    Get PDF
    Many asteroids with low bulk densities must have a rubble pile structure and internal voids. Although little is known about their internal structure, numerical simulations of impact events on these asteroids rely on assumptions on how the voids are distributed. We present a new approach to model impacts on rubble pile asteroids that explicitly takes into account their internal structure. The formation of the asteroid is modelled as a rubble pile aggregate of spherical pebbles of different sizes. This aggregate is then converted into a high-resolution smoothed particle hydrodynamics (SPH) model, accounting for macroporosity inside the pebbles. We compare impact-event outcomes for a large set of internal configurations to explore the parameter space of our model-building process. The analysis of the fragment size distribution and the disruption threshold quantifies the specific influence of each input parameter. The size distribution of the pebbles used in our model is a simple power law, containing three free parameters: the slope α, the lower cut-off radius rmin and the upper cut-off radius rmax. The influence of all three parameters on the outcome is assessed in this paper. The existence of void space in our model increases the resistance against collisional disruption, a behaviour previously reported based on numerical simulations using a continuum description of porous material (Holsapple 2009). We show, for a set of asteroid collisions typical for small asteroids in the main belt, that no a priori knowledge of the exact size distribution of the pebbles inside the asteroid is needed, as the choice of the corresponding parameters does not directly correlate with the impact outcome

    The First Very Long Baseline Interferometric SETI Experiment

    Full text link
    The first Search for Extra-Terrestrial Intelligence (SETI) conducted with Very Long Baseline Interferometry (VLBI) is presented. By consideration of the basic principles of interferometry, we show that VLBI is efficient at discriminating between SETI signals and human generated radio frequency interference (RFI). The target for this study was the star Gliese 581, thought to have two planets within its habitable zone. On 2007 June 19, Gliese 581 was observed for 8 hours at 1230-1544 with the Australian Long Baseline Array. The dataset was searched for signals appearing on all interferometer baselines above five times the noise limit. A total of 222 potential SETI signals were detected and by using automated data analysis techniques, were ruled out as originating from the Gliese 581 system. From our results we place an upper limit of 7 MW/Hz on the power output of any isotropic emitter located in the Gliese 581 system, within this frequency range. This study shows that VLBI is ideal for targeted SETI, including follow-up observations. The techniques presented are equally applicable to next-generation interferometers, such as the long baselines of the Square Kilometre Array (SKA).Comment: 34 pages, 6 figures, 2 tables. Accepted on 25/05/2012 for publication in The Astronomical Journa

    VLA Observations of Single Pulses from the Galactic Center Magnetar

    Full text link
    We present the results of a 7-12 GHz phased-array study of the Galactic center magnetar J1745-2900 with the Karl G. Jansky Very Large Array (VLA). Using data from two 6.5 hour observations from September 2014, we find that the average profile is comprised of several distinct components at these epochs and is stable over \simday timescales and \simGHz frequencies. Comparison with additional phased VLA data at 8.7 GHz shows significant profile changes on longer timescales. The average profile at 7-12 GHz is dominated by the jitter of relatively narrow pulses. The pulses in each of the four main profile components seen in September 2014 are uncorrelated in phase and amplitude, though there is a small but significant correlation in the occurrence of pulses in two of the profile components. Using the brightest pulses, we measure the dispersion and scattering parameters of J1745-2900. A joint fit of 38 pulses gives a 10 GHz pulse broadening time of τsc,10=0.09±0.03 ms\tau_{\rm sc, 10} = 0.09 \pm 0.03~\rm ms and a dispersion measure of DM=17601.3+2.4 pc cm3{\rm DM} = 1760^{+2.4}_{-1.3}~{\rm pc~cm}^{-3}. Both of these results are consistent with previous measurements, which suggests that the scattering and dispersion measure of J1745-2900 may be stable on timescales of several years.Comment: 20 pages, 10 figures, published in Ap

    Surveying the Effects of Limitations on Taxes and Expenditures: What Do/Don’t We Know?

    Get PDF
    The literature on tax and expenditure limitations (TELs) is extensive and continues to grow, as the impact of these institutional constraints on fiscal and economic outcomes continues to develop. In this survey, we review the literature of state- and local-level TELs, in an attempt to provide an overview of their theoretical, operational, and empirical contexts. The study concludes with a discussion of future TEL research needs

    The first resolved imaging of milliarcsecond-scale jets in Circinus X-1

    Get PDF
    We present the first resolved imaging of the milliarcsecond-scale jets in the neutron star X-ray binary Circinus X-1, made using the Australian Long Baseline Array. The angular extent of the resolved jets is ~20 milliarcseconds, corresponding to a physical scale of ~150 au at the assumed distance of 7.8 kpc. The jet position angle is relatively consistent with previous arcsecond-scale imaging with the Australia Telescope Compact Array. The radio emission is symmetric about the peak, and is unresolved along the minor axis, constraining the opening angle to be less than 20 degrees. We observe evidence for outward motion of the components between the two halves of the observation. Constraints on the proper motion of the radio-emitting components suggest that they are only mildly relativistic, although we cannot definitively rule out the presence of the unseen, ultra-relativistic (Lorentz factor >15) flow previously inferred to exist in this system.Comment: Accepted for publication in MNRAS Letters. 6 pages, 4 figure

    DiFX2: A more flexible, efficient, robust and powerful software correlator

    Get PDF
    Software correlation, where a correlation algorithm written in a high-level language such as C++ is run on commodity computer hardware, has become increasingly attractive for small to medium sized and/or bandwidth constrained radio interferometers. In particular, many long baseline arrays (which typically have fewer than 20 elements and are restricted in observing bandwidth by costly recording hardware and media) have utilized software correlators for rapid, cost-effective correlator upgrades to allow compatibility with new, wider bandwidth recording systems and improve correlator flexibility. The DiFX correlator, made publicly available in 2007, has been a popular choice in such upgrades and is now used for production correlation by a number of observatories and research groups worldwide. Here we describe the evolution in the capabilities of the DiFX correlator over the past three years, including a number of new capabilities, substantial performance improvements, and a large amount of supporting infrastructure to ease use of the code. New capabilities include the ability to correlate a large number of phase centers in a single correlation pass, the extraction of phase calibration tones, correlation of disparate but overlapping sub-bands, the production of rapidly sampled filterbank and kurtosis data at minimal cost, and many more. The latest version of the code is at least 15% faster than the original, and in certain situations many times this value. Finally, we also present detailed test results validating the correctness of the new code.Comment: 28 pages, 9 figures, accepted for publication in PAS

    Simultaneous Chandra and VLA Observations of the Transitional Millisecond Pulsar PSR J1023+0038: Anti-correlated X-Ray and Radio Variability

    Get PDF
    We present coordinated Chandra X-ray Observatory and Karl G. Jansky Very Large Array observations of the transitional millisecond pulsar PSR J1023+0038 in its low-luminosity accreting state. The unprecedented five hours of strictly simultaneous X-ray and radio continuum coverage for the first time unambiguously show a highly reproducible, anti-correlated variability pattern. The characteristic switches from the X-ray high mode into a low mode are always accompanied by a radio brightening with a duration that closely matches the X-ray low mode interval. This behavior cannot be explained by a canonical inflow/outflow accretion model where the radiated emission and the jet luminosity are powered by, and positively correlated with, the available accretion energy. We interpret this phenomenology as alternating episodes of low-level accretion onto the neutron star during the X-ray high mode that are interrupted by rapid ejections of plasma by the active rotation-powered pulsar, possibly initiated by a reconfiguration of the pulsar magnetosphere, that cause a transition to a less X-ray luminous mode. The observed anti-correlation between radio and X-ray luminosity has an additional consequence: transitional MSPs can make excursions into a region of the radio/X-ray luminosity plane previously thought to be occupied solely by black hole X-ray binary sources. This complicates the use of this luminosity relation for identifying candidate black holes, suggesting the need for additional discriminants when attempting to establish the true nature of the accretor

    Enzymatic reduction and oxidation of fibre-bound azo-dyes

    Get PDF
    A new customer and environmental friendly method of hair bound dye decolouration was developed. Biotransformation of the azo-dyes Flame Orange and Ruby Red was studied using different oxidoreductases. The pathways of azo dye conversion by these enzymes were investigated and the intermediates and metabolites were identified and characterised using UV–vis spectroscopy, high-performance liquid chromatography (HPLC) and mass spectrometry (MS). Laccase from Pycnoporus cinnabarinus, manganese peroxidase (MnP) from Nematoloma frowardii and the novel Agrocybe aegerita peroxidase (AaP) were found to use a similar mechanism to convert azo dyes. They N-demethylated the dyes and concomitantly polymerized them to some extent. On the other hand the mechanism for cleavage of the azo bond by azo-reductases of Bacillus cereus and B. subtilis was based on reduction of the azo bond at the expense of NAD(P)H

    DiFX: A software correlator for very long baseline interferometry using multi-processor computing environments

    Get PDF
    We describe the development of an FX style correlator for Very Long Baseline Interferometry (VLBI), implemented in software and intended to run in multi-processor computing environments, such as large clusters of commodity machines (Beowulf clusters) or computers specifically designed for high performance computing, such as multi-processor shared-memory machines. We outline the scientific and practical benefits for VLBI correlation, these chiefly being due to the inherent flexibility of software and the fact that the highly parallel and scalable nature of the correlation task is well suited to a multi-processor computing environment. We suggest scientific applications where such an approach to VLBI correlation is most suited and will give the best returns. We report detailed results from the Distributed FX (DiFX) software correlator, running on the Swinburne supercomputer (a Beowulf cluster of approximately 300 commodity processors), including measures of the performance of the system. For example, to correlate all Stokes products for a 10 antenna array, with an aggregate bandwidth of 64 MHz per station and using typical time and frequency resolution presently requires of order 100 desktop-class compute nodes. Due to the effect of Moore's Law on commodity computing performance, the total number and cost of compute nodes required to meet a given correlation task continues to decrease rapidly with time. We show detailed comparisons between DiFX and two existing hardware-based correlators: the Australian Long Baseline Array (LBA) S2 correlator, and the NRAO Very Long Baseline Array (VLBA) correlator. In both cases, excellent agreement was found between the correlators. Finally, we describe plans for the future operation of DiFX on the Swinburne supercomputer, for both astrophysical and geodetic science.Comment: 41 pages, 10 figures, accepted for publication in PAS

    Gravitational wave astronomy with the SKA

    Full text link
    On a time scale of years to decades, gravitational wave (GW) astronomy will become a reality. Low frequency (nanoHz) GWs are detectable through long-term timing observations of the most stable pulsars. Radio observatories worldwide are currently carrying out observing programmes to detect GWs, with data sets being shared through the International Pulsar Timing Array project. One of the most likely sources of low frequency GWs are supermassive black hole binaries (SMBHBs), detectable as a background due to a large number of binaries, or as continuous or burst emission from individual sources. No GW signal has yet been detected, but stringent constraints are already being placed on galaxy evolution models. The SKA will bring this research to fruition. In this chapter, we describe how timing observations using SKA1 will contribute to detecting GWs, or can confirm a detection if a first signal already has been identified when SKA1 commences observations. We describe how SKA observations will identify the source(s) of a GW signal, search for anisotropies in the background, improve models of galaxy evolution, test theories of gravity, and characterise the early inspiral phase of a SMBHB system. We describe the impact of the large number of millisecond pulsars to be discovered by the SKA; and the observing cadence, observation durations, and instrumentation required to reach the necessary sensitivity. We describe the noise processes that will influence the achievable precision with the SKA. We assume a long-term timing programme using the SKA1-MID array and consider the implications of modifications to the current design. We describe the possible benefits from observations using SKA1-LOW. Finally, we describe GW detection prospects with SKA1 and SKA2, and end with a description of the expectations of GW astronomy.Comment: 19 pages, 3 figures, to be published in: "Advancing Astrophysics with the Square Kilometre Array", Proceedings of Science, PoS(AASKA14)03
    corecore