809 research outputs found
The methanol lines and hot core of OMC2-FIR4, an intermediate-mass protostar, with Herschel/HIFI
In contrast with numerous studies on the physical and chemical structure of low- and high-mass protostars, much less is known about their intermediate-mass counterparts, a class of objects that could help to elucidate the mechanisms of star formation on both ends of the mass range. We present the first results from a rich HIFI spectral dataset on an intermediate-mass protostar, OMC2-FIR4, obtained in the CHESS (Chemical HErschel Survey of Star forming regions) key programme. The more than 100 methanol lines detected between 554 and 961 GHz cover a range in upper level energy of 40 to 540 K. Our physical interpretation focusses on the hot core, but likely the cold envelope and shocked regions also play a role in reality, because an analysis of the line profiles suggests the presence of multiple emission components. An upper limit of 10^(-6) is placed on the methanol abundance in the hot core, using a population diagram, large-scale source model and other considerations. This value is consistent with abundances previously seen in low-mass hot cores. Furthermore, the highest energy lines at the highest frequencies display asymmetric profiles, which may arise from infall around the hot core
The CHESS spectral survey of star forming regions: Peering into the protostellar shock L1157-B1 - II. Shock dynamics
Context. The outflow driven by the low-mass class 0 protostar L1157 is the prototype of the so-called chemically active outflows. The bright bowshock B1 in the southern outflow lobe is a privileged testbed of magneto-hydrodynamical (MHD) shock models, for which dynamical and chemical processes are strongly interdependent.
Aims. We present the first results of the unbiased spectral survey of the L1157-B1 bowshock, obtained in the framework of the key program âChemical HErschel Surveys of star forming regionsâ (CHESS). The main aim is to trace the warm and chemically enriched gas and to infer the excitation conditions in the shock region.
Methods. The CO 5-4 and o-H2_O 1_(10)â1_(01) lines have been detected at high-spectral resolution in the unbiased spectral survey of the HIFI-band 1b spectral window (555â636 GHz), presented by Codella et al. in this volume. Complementary ground-based observations in the submm window help establish the origin of the emission detected in the main-beam of HIFI and the physical conditions in the shock.
Results. Both lines exhibit broad wings, which extend to velocities much higher than reported up to now. We find that the molecular emission arises from two regions with distinct physical conditions : an extended, warm (100 K), dense (3 Ă 10^5 cm^(-3)) component at low-velocity, which dominates the water line flux in Band 1; a secondary component in a small region of B1 (a few arcsec) associated with high-velocity, hot (>400 K) gas of moderate density ((1.0â3.0) Ă 10^4 cm^(-3)), which appears to dominate the flux of the water line at 179ÎŒm observed with PACS. The water abundance is enhanced by two orders of magnitude between the low- and the high-velocity component, from 8 Ă 10^(-7) up to 8 Ă 10^(-5). The properties of the high-velocity component agree well with the predictions of steady-state C-shock models
Principal Component Analysis of Cavity Beam Position Monitor Signals
Model-independent analysis (MIA) methods are generally useful for analysing
complex systems in which relationships between the observables are non-trivial
and noise is present. Principle Component Analysis (PCA) is one of MIA methods
allowing to isolate components in the input data graded to their contribution
to the variability of the data. In this publication we show how the PCA can be
applied to digitised signals obtained from a cavity beam position monitor
(CBPM) system on the example of a 3-cavity test system installed at the
Accelerator Test Facility 2 (ATF2) at KEK in Japan. We demonstrate that the PCA
based method can be used to extract beam position information, and matches
conventional techniques in terms of performance, while requiring considerably
less settings and data for calibration
Effects of CO2 on H2O band profiles and band strengths in mixed H2O:CO2 ices
H2O is the most abundant component of astrophysical ices. In most lines of
sight it is not possible to fit both the H2O 3 um stretching, the 6 um bending
and the 13 um libration band intensities with a single pure H2O spectrum.
Recent Spitzer observations have revealed CO2 ice in high abundances and it has
been suggested that CO2 mixed into H2O ice can affect relative strengths of the
3 um and 6 um bands. We used laboratory infrared transmission spectroscopy of
H2O:CO2 ice mixtures to investigate the effects of CO2 on H2O ice spectral
features at 15-135 K. We find that the H2O peak profiles and band strengths are
significantly different in H2O:CO2 ice mixtures compared to pure H2O ice. In
all H2O:CO2 mixtures, a strong free-OH stretching band appears around 2.73 um,
which can be used to put an upper limit on the CO2 concentration in the H2O
ice. The H2O bending mode profile also changes drastically with CO2
concentration; the broad pure H2O band gives way to two narrow bands as the CO2
concentration is increased. This makes it crucial to constrain the environment
of H2O ice to enable correct assignments of other species contributing to the
interstellar 6 um absorption band. The amount of CO2 present in the H2O ice of
B5:IRS1 is estimated by simultaneously comparing the H2O stretching and bending
regions and the CO2 bending mode to laboratory spectra of H2O, CO2, H2O:CO2 and
HCOOH.Comment: 12 pages, 11 figures, accepted by A&
Herschel/HIFI discovery of interstellar chloronium (H_2Cl^+)
We report the first detection of chloronium, H_2Cl^+, in the interstellar medium, using the HIFI instrument aboard the Herschel Space Observatory.
The 2_(12)â1_(01) lines of ortho-H^(35)_2 Cl^+ and ortho-H^(37)_2 Cl^+ are detected in absorption towards NGC 6334I, and the 1_(11)â0_(00) transition of para-H^(35)_2 Cl^+ is
detected in absorption towards NGC 6334I and Sgr B2(S). The H_2Cl^+ column densities are compared to those of the chemically-related species
HCl. The derived HCl/H_2Cl^+ column density ratios, ~1â10, are within the range predicted by models of diffuse and dense photon dominated
regions (PDRs). However, the observed H_2Cl^+ column densities, in excess of 10^(13) cm^(â2), are significantly higher than the model predictions. Our
observations demonstrate the outstanding spectroscopic capabilities of HIFI for detecting new interstellar molecules and providing key constraints
for astrochemical models
Infrared spectroscopy of solid CO-CO2 mixtures and layers
The spectra of pure, mixed and layered CO and CO2 ices have been studied
systematically under laboratory conditions using infrared spectroscopy. This
work provides improved resolution spectra (0.5 cm-1) of the CO2 bending and
asymmetric stretching mode, as well as the CO stretching mode, extending the
existing Leiden database of laboratory spectra to match the spectral resolution
reached by modern telescopes and to support the interpretation of the most
recent data from Spitzer. It is shown that mixed and layered CO and CO2 ices
exhibit very different spectral characteristics, which depend critically on
thermal annealing and can be used to distinguish between mixed, layered and
thermally annealed CO-CO2 ices. CO only affects the CO2 bending mode spectra in
mixed ices below 50K under the current experimental conditions, where it
exhibits a single asymmetric band profile in intimate mixtures. In all other
ice morphologies the CO2 bending mode shows a double peaked profile, similar to
that observed for pure solid CO2. Conversely, CO2 induces a blue-shift in the
peak-position of the CO stretching vibration, to a maximum of 2142 cm-1 in
mixed ices, and 2140-2146 cm-1 in layered ices. As such, the CO2 bending mode
puts clear constraints on the ice morphology below 50K, whereas beyond this
temperature the CO2 stretching vibration can distinguish between initially
mixed and layered ices. This is illustrated for the low-mass YSO HH46, where
the laboratory spectra are used to analyse the observed CO and CO2 band
profiles and try to constrain the formation scenarios of CO2.Comment: Accepted in A&
Laboratory Determination of the Infrared Band Strengths of Pyrene Frozen in Water Ice: Implications for the Composition of Interstellar Ices
Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3
microns) from the gas phase interstellar medium have long been attributed to
polycyclic aromatic hydrocarbons (PAHs). A significant portion (10%-20%) of the
Milky Way's carbon reservoir is locked in PAH molecules, which makes their
characterization integral to our understanding of astrochemistry. In molecular
clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs
are expected to be frozen in the icy mantles of dust grains where they should
reveal themselves through infrared absorption. To facilitate the search for
frozen interstellar PAHs, laboratory experiments were conducted to determine
the positions and strengths of the bands of pyrene mixed with H2O and D2O ices.
The D2O mixtures are used to measure pyrene bands that are masked by the strong
bands of H2O, leading to the first laboratory determination of the band
strength for the CH stretching mode of pyrene in water ice near 3.25 microns.
Our infrared band strengths were normalized to experimentally determined
ultraviolet band strengths, and we find that they are generally ~50% larger
than those reported by Bouwman et al. based on theoretical strengths. These
improved band strengths were used to reexamine YSO spectra published by Boogert
et al. to estimate the contribution of frozen PAHs to absorption in the 5-8
micron spectral region, taking into account the strength of the 3.25 micron CH
stretching mode. It is found that frozen neutral PAHs contain 5%-9% of the
cosmic carbon budget, and account for 2%-9% of the unidentified absorption in
the 5-8 micron region.Comment: Accepted for publication in ApJ on 14 Feb 201
Detection of interstellar oxidaniumyl: Abundant H_2O^+ towards the star-forming regions DR21, Sgr B2, and NGC6334
Aims. We identify a prominent absorption feature at 1115 GHz, detected in first HIFI spectra towards high-mass star-forming regions, and interpret its astrophysical origin.
Methods. The characteristic hyperfine pattern of the H_2O^+ ground-state rotational transition, and the lack of other known low-energy transitions in this frequency range, identifies the feature as H_2O^+ absorption against the dust continuum background and allows us to derive the velocity profile of the absorbing gas. By comparing this velocity profile with velocity profiles of other tracers in the DR21 star-forming region, we constrain the frequency of the transition and the conditions for its formation.
Results. In DR21, the velocity distribution of H_2O^+ matches that of the [C_(II)] line at 158 ÎŒm and of OH cm-wave absorption, both stemming from the hot and dense clump surfaces facing the H_(II)-region and dynamically affected by the blister outflow. Diffuse foreground gas dominates the absorption towards Sgr B2. The integrated intensity of the absorption line allows us to derive lower limits to the H_2O^+ column density of 7.2 Ă 10^(12) cm^(â2) in NGC 6334, 2.3 Ă 10^(13) cm^(â2) in DR21, and 1.1 Ă 10^(15) cm^(â2) in Sgr B2
- âŠ