30 research outputs found

    Light quark electromagnetic structure of baryons

    Get PDF
    Fascinating aspects of the light quark-mass behavior of baryon electromagnetic form factors are highlighted. Using FLIC fermions on 203×4020^3 \times 40 quenched O(a2){\cal O}(a^2)-improved gauge fields, we explore charge radii and magnetic moments at pion masses as light as 300 MeV. Of particular interest is chiral curvature of proton charge radii and magnetic moments, the environmental dependence of strange quark properties in hyperons, and the remarkable signature of quenched chiral-nonanalytic behavior in the magnetic moment of Δ\Delta baryon resonances.Comment: 7 pages, 6 figures, Presented at the 24th International Symposium on Lattice Field Theory (Lattice 2006), Tucson, Arizona, 23-28 Jul 200

    Precision electromagnetic structure of decuplet baryons in the chiral regime

    Get PDF
    The electromagnetic properties of the baryon decuplet are calculated in quenched QCD on a 20^3 x 40 lattice with a lattice spacing of 0.128 fm using the fat-link irrelevant clover (FLIC) fermion action with quark masses providing a pion mass as low as 300 MeV. Magnetic moments and charge radii are extracted from the electric and magnetic form factors for each individual quark sector. From these, the corresponding baryon properties are constructed. We present results for the higher order moments of the spin-3/2 baryons, including the electric quadrupole moment E2 and the magnetic octupole moment M3. The world's first determination of a non-zero M3 form factor for the Delta baryon is presented. With these results we provide a conclusive analysis which shows that decuplet baryons are deformed. We compare the decuplet baryon results from a similar lattice calculation of the octet baryons. We establish that the environment sensitivity is far less pronounced in the case of the decuplet baryons compared to that in the octet baryons. A surprising result is that the charge radii of the decuplet baryons are generally smaller than that of the octet baryons. The magnetic moment of the Delta^+ reveals a turn over in the low quark mass region, making it smaller than the proton magnetic moment. These results are consistent with the expectations of quenched chiral perturbation theory. A similar turn over is also noticed in the magnetic moment of the Sigma^*0, but not for Xi^* where only kaon loops can appear in quenched QCD. The electric quadrupole moment of the Omega^- baryon is positive when the negative charge factor is included, and is equal to 0.86 +- 0.12 x 10^-2 fm^2, indicating an oblate shape.Comment: 30 pages, 32 figure

    Precision Electromagnetic Structure of Octet Baryons in the Chiral Regime

    Get PDF
    The electromagnetic properties of the baryon octet are calculated in quenched QCD on a 20^3 x 40 lattice with a lattice spacing of 0.128 fm using the fat-link irrelevant clover (FLIC) fermion action. FLIC fermions enable simulations to be performed efficiently at quark masses as low as 300 MeV. By combining FLIC fermions with an improved-conserved vector current, we ensure that discretisation errors occur only at O(a^2) while maintaining current conservation. Magnetic moments and electric and magnetic radii are extracted from the electric and magnetic form factors for each individual quark sector. From these, the corresponding baryon properties are constructed. Our results are compared extensively with the predictions of quenched chiral perturbation theory. We detect substantial curvature and environment sensitivity of the quark contributions to electric charge radii and magnetic moments in the low quark mass region. Furthermore, our quenched QCD simulation results are in accord with the leading non-analytic behaviour of quenched chiral perturbation theory, suggesting that the sum of higher-order terms makes only a small contribution to chiral curvature.Comment: 29 pages, 33 figures, 20 table

    Delta-baryon electromagnetic form factors in lattice QCD

    Full text link
    We develop techniques to calculate the four Delta electromagnetic form factors using lattice QCD, with particular emphasis on the sub-dominant electric quadrupole form factor that probes deformation of the Delta. Results are presented for pion masses down to approximately 350 MeV for three cases: quenched QCD, two flavors of dynamical Wilson quarks, and three flavors of quarks described by a mixed action combining domain wall valence quarks and dynamical staggered sea quarks. The magnetic moment of the Delta is chirally extrapolated to the physical point and the Delta charge density distributions are discussed.Comment: 4 pages, 5 figure

    The strangeness magnetic moment of the nucleon from FLIC fermions

    Get PDF
    By imposing the constraints of charge symmetry we show that the strangeness magnetic moment of the nucleon can be expressed in terms of empirical magnetic moments and ratios of valence quark magnetic moments. The latter are determined using modern chiral extrapolation techniques and recent low mass lattice QCD simulations of the individual quark contributions to the magnetic moments of the nucleon octet. The result is a precise determination of G_M^s, namely -0.043 +/- 0.026 mu_N, which is consistent with the latest experimental measurements.D.B. Leinweber, S. Boinepalli, A.W. Thomas, A.G. Williams, R.D. Young, J.B. Zhang and J.M. Zanottihttp://www.elsevier.com/wps/find/journaldescription.cws_home/505717/description#descriptio

    Precise determination of the strangeness magnetic moment of the nucleon

    Get PDF
    By combining the constraints of charge symmetry with new chiral extrapolation techniques and recent low mass lattice QCD simulations of the individual quark contributions to the magnetic moments of the nucleon octet, we obtain a precise determination of the strange magnetic moment of the proton. The result, namely G_M^s = -0.046 +/- 0.019 mu_N, is consistent with the latest experimental measurements but an order of magnitude more precise. This poses a tremendous challenge for future experiments.Comment: 4 pages, 7 figures. Submitted to Phys. Rev. Lett. Clairification of manuscript and improved correlation function analysi

    Strange form factors of the nucleon in a two-component model

    Full text link
    The strange form factors of the nucleon are studied in a two-component model consisting of a three-quark intrinsic structure surrounded by a meson cloud. A comparison with the available experimental world data from the SAMPLE, PVA4, HAPPEX and G0 collaborations shows a good overall agreement. The strange magnetic moment is found to be positive, 0.315 nm.Comment: 11 pages, 2 tables, 5 figures, accepted for publication in J. Phys. G. Revised version, new figures, extra table, new results, updated reference

    Systematic uncertainties in the precise determination of the strangeness magnetic moment of the nucleon

    Get PDF
    Systematic uncertainties in the recent precise determination of the strangeness magnetic moment of the nucleon are identified and quantified. In summary, G_M^s = -0.046 \pm 0.019 \mu_N.Comment: Invited presentation at PAVI '04, International Workshop on Parity Violation and Hadronic Structure, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, France, June 8-11, 2004. 7 pages, 16 figure

    Strange electric form factor of the proton

    Get PDF
    By combining the constraints of charge symmetry with new chiral extrapolation techniques and recent low-mass quenched lattice QCD simulations of the individual quark contributions to the electric charge radii of the baryon octet, we obtain an accurate determination of the strange electric charge radius of the proton. While this analysis provides a value for Gs E(Q2 = 0:1 GeV2) in agreement with the best current data, the theoretical error is comparable with that expected from future HAPPEX results from JLab. Together with the earlier determination of Gs M, this result considerably constrains the role of hidden flavor in the structure of the nucleon.D. B. Leinweber, S. Boinepalli, A.W. Thomas, P. Wang, A. G. Williams, R. D. Young, J. M. Zanotti, and J. B. Zhan

    Electromagnetic Form Factors with FLIC fermions

    Get PDF
    The Fat-Link Irrelevant Clover (FLIC) fermion action provides a new form of nonperturbative O(a) improvement and allows efficient access to the light quark-mass regime. FLIC fermions enable the construction of the nonperturbatively O(a)-improved conserved vector current without the difficulties associated with the fine tuning of the improvement coefficients. The simulations are performed with an O(a^2) mean-field improved plaquette-plus-rectangle gluon action on a 20^3 x 40 lattice with a lattice spacing of 0.128 fm, enabling the first simulation of baryon form factors at light quark masses on a large volume lattice. Magnetic moments, electric charge radii and magnetic radii are extracted from these form factors, and show interesting chiral nonanalytic behavior in the light quark mass regime.Comment: Presented by J.Zanotti at the Workshop on Lattice Hadron Physics, Cairns, Australia, 2003. 7pp, 8 figure
    corecore