261 research outputs found

    Universal deformation rings of modules for algebras of dihedral type of polynomial growth

    Full text link
    Let k be an algebraically closed field, and let \Lambda\ be an algebra of dihedral type of polynomial growth as classified by Erdmann and Skowro\'{n}ski. We describe all finitely generated \Lambda-modules V whose stable endomorphism rings are isomorphic to k and determine their universal deformation rings R(\Lambda,V). We prove that only three isomorphism types occur for R(\Lambda,V): k, k[[t]]/(t^2) and k[[t]].Comment: 11 pages, 2 figure

    Output functions and fractal dimensions in dynamical systems

    Full text link
    We present a novel method for the calculation of the fractal dimension of boundaries in dynamical systems, which is in many cases many orders of magnitude more efficient than the uncertainty method. We call it the Output Function Evaluation (OFE) method. The OFE method is based on an efficient scheme for computing output functions, such as the escape time, on a one-dimensional portion of the phase space. We show analytically that the OFE method is much more efficient than the uncertainty method for boundaries with D<0.5D<0.5, where DD is the dimension of the intersection of the boundary with a one-dimensional manifold. We apply the OFE method to a scattering system, and compare it to the uncertainty method. We use the OFE method to study the behavior of the fractal dimension as the system's dynamics undergoes a topological transition.Comment: Uses REVTEX; to be published in Phys. Rev. Let

    Fractal escapes in Newtonian and relativistic multipole gravitational fields

    Full text link
    We study the planar motion of test particles in gravitational fields produced by an external material halo, of the type found in many astrophysical systems, such as elliptical galaxies and globular clusters. Both the Newtonian and the general-relativistic dynamics are examined, and in the relativistic case the dynamics of both massive and massless particles are investigated. The halo field is given in general by a multipole expansion; we restrict ourselves to multipole fields of pure order, whose Newtonian potentials are homogeneous polynomials in cartesian coordinates. A pure (n)-pole field has (n) different escapes, one of which is chosen by the particle according to its initial conditions. We find that the escape has a fractal dependency on the initial conditions for (n>2) both in the Newtonian and the relativistic cases for massive test particles, but with important differences between them. The relativistic motion of massless particles, however, was found to be regular for all the fields we could study. The box-counting dimension was used in each case to quantify the sensitivity to initial conditions which arises from the fractality of the escape route.Comment: 17 pages, 7 figures, uses REVTE

    Convergence of random zeros on complex manifolds

    Full text link
    We show that the zeros of random sequences of Gaussian systems of polynomials of increasing degree almost surely converge to the expected limit distribution under very general hypotheses. In particular, the normalized distribution of zeros of systems of m polynomials of degree N, orthonormalized on a regular compact subset K of C^m, almost surely converge to the equilibrium measure on K as the degree N goes to infinity.Comment: 16 page

    Spectral statistics for quantized skew translations on the torus

    Full text link
    We study the spectral statistics for quantized skew translations on the torus, which are ergodic but not mixing for irrational parameters. It is shown explicitly that in this case the level--spacing distribution and other common spectral statistics, like the number variance, do not exist in the semiclassical limit.Comment: 7 pages. One figure, include

    Ray splitting in paraxial optical cavities

    Full text link
    We present a numerical investigation of the ray dynamics in a paraxial optical cavity when a ray splitting mechanism is present. The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved by inserting an optical beam splitter perpendicular to the cavity axis. We show that depending on the position of the beam splitter the optical resonator can become unstable and the ray dynamics displays a positive Lyapunov exponent.Comment: 13 pages, 7 figures, 1 tabl

    Spectra of random Hermitian matrices with a small-rank external source: supercritical and subcritical regimes

    Get PDF
    Random Hermitian matrices with a source term arise, for instance, in the study of non-intersecting Brownian walkers \cite{Adler:2009a, Daems:2007} and sample covariance matrices \cite{Baik:2005}. We consider the case when the n×nn\times n external source matrix has two distinct real eigenvalues: aa with multiplicity rr and zero with multiplicity nrn-r. The source is small in the sense that rr is finite or r=O(nγ)r=\mathcal O(n^\gamma), for 0<γ<10< \gamma<1. For a Gaussian potential, P\'ech\'e \cite{Peche:2006} showed that for a|a| sufficiently small (the subcritical regime) the external source has no leading-order effect on the eigenvalues, while for a|a| sufficiently large (the supercritical regime) rr eigenvalues exit the bulk of the spectrum and behave as the eigenvalues of r×rr\times r Gaussian unitary ensemble (GUE). We establish the universality of these results for a general class of analytic potentials in the supercritical and subcritical regimes.Comment: 41 pages, 4 figure

    The Julia sets and complex singularities in hierarchical Ising models

    Full text link
    We study the analytical continuation in the complex plane of free energy of the Ising model on diamond-like hierarchical lattices. It is known that the singularities of free energy of this model lie on the Julia set of some rational endomorphism ff related to the action of the Migdal-Kadanoff renorm-group. We study the asymptotics of free energy when temperature goes along hyperbolic geodesics to the boundary of an attractive basin of ff. We prove that for almost all (with respect to the harmonic measure) geodesics the complex critical exponent is common, and compute it

    Free particle scattering off two oscillating disks

    Full text link
    We investigate the two-dimensional classical dynamics of the scattering of point particles by two periodically oscillating disks. The dynamics exhibits regular and chaotic scattering properties, as a function of the initial conditions and parameter values of the system. The energy is not conserved since the particles can gain and loose energy from the collisions with the disks. We find that for incident particles whose velocity is on the order of the oscillating disk velocity, the energy of the exiting particles displays non-monotonic gaps of allowed energies, and the distribution of exiting particle velocities shows significant fluctuations in the low energy regime. We also considered the case when the initial velocity distribution is Gaussian, and found that for high energies the exit velocity distribution is Gaussian with the same mean and variance. When the initial particle velocities are in the irregular regime the exit velocity distribution is Gaussian but with a smaller mean and variance. The latter result can be understood as an example of stochastic cooling. In the intermediate regime the exit velocity distribution differs significantly from Gaussian. A comparison of the results presented in this paper to previous chaotic static scattering problems is also discussed.Comment: 9 doble sided pages 13 Postscript figures, REVTEX style. To appear in Phys. Rev.

    Reconstruction of Random Colourings

    Get PDF
    Reconstruction problems have been studied in a number of contexts including biology, information theory and and statistical physics. We consider the reconstruction problem for random kk-colourings on the Δ\Delta-ary tree for large kk. Bhatnagar et. al. showed non-reconstruction when Δ12klogko(klogk)\Delta \leq \frac12 k\log k - o(k\log k) and reconstruction when Δklogk+o(klogk)\Delta \geq k\log k + o(k\log k). We tighten this result and show non-reconstruction when Δk[logk+loglogk+1ln2o(1)]\Delta \leq k[\log k + \log \log k + 1 - \ln 2 -o(1)] and reconstruction when Δk[logk+loglogk+1+o(1)]\Delta \geq k[\log k + \log \log k + 1+o(1)].Comment: Added references, updated notatio
    corecore