11,278 research outputs found
Multidimensional Geometrical Model of the Renormalized Electrical Charge with Splitting off the Extra Coordinates
A geometrical model of electric charge is proposed. This model has ``naked''
charge screened with a ``fur - coat'' consisting of virtual wormholes. The 5D
wormhole solution in the Kaluza - Klein theory is the ``naked'' charge. The
splitting off of the 5D dimension happens on the two spheres (null surfaces)
bounding this 5D wormhole. This allows one to sew two Reissner - Nordstr\"om
black holes onto it on both sides. The virtual wormholes entrap a part of the
electrical flux lines coming into the ``naked'' charge. This effect essentially
changes the charge visible at infinity so that it satisfies the real relation
.Comment: 10 pages, 1 figure, awarded Honorable Mention by Grav.Res.Found.,
199
On Subleading Contributions to the AdS/CFT Trace Anomaly
In the context of the AdS/CFT correspondence, we perform a direct computation
in AdS_5 supergravity of the trace anomaly of a d=4, N=2 SCFT. We find
agreement with the field theory result up to next to leading order in the 1/N
expansion. In particular, the order N gravitational contribution to the anomaly
is obtained from a Riemann tensor squared term in the 7-brane effective action
deduced from heterotic - type I duality. We also discuss, in the AdS/CFT
context, the order N corrections to the trace anomaly in d=4, N=4 SCFTs
involving SO or Sp gauge groups.Comment: 25 pages, LaTeX, v2: references adde
Fermi Coordinates and Penrose Limits
We propose a formulation of the Penrose plane wave limit in terms of null
Fermi coordinates. This provides a physically intuitive (Fermi coordinates are
direct measures of geodesic distance in space-time) and manifestly covariant
description of the expansion around the plane wave metric in terms of
components of the curvature tensor of the original metric, and generalises the
covariant description of the lowest order Penrose limit metric itself, obtained
in hep-th/0312029. We describe in some detail the construction of null Fermi
coordinates and the corresponding expansion of the metric, and then study
various aspects of the higher order corrections to the Penrose limit. In
particular, we observe that in general the first-order corrected metric is such
that it admits a light-cone gauge description in string theory. We also
establish a formal analogue of the Weyl tensor peeling theorem for the Penrose
limit expansion in any dimension, and we give a simple derivation of the
leading (quadratic) corrections to the Penrose limit of AdS_5 x S^5.Comment: 25 page
PP-waves from BPS supergravity monopoles
We discuss the Penrose limit of the Chamseddine-Volkov BPS selfgravitating
monopole in four dimensional N=4 supergravity theory with non-abelian gauge
multiplets. We analyze the properties of the resulting supersymmetric pp-wave
solutions when various Penrose limits are considered. Apart from the usual
rescaling of coordinates and fields we find that a rescaling of the gauge
coupling constant to zero is required, rendering the theory abelian. We also
study the Killing spinor equations showing an enhancement of the
supersymmetries preserved by the solutions and discuss the embedding of the
pp-wave solution in dimensions.Comment: 14 pages, no figures. Minor changes, to appear in Phys. Lett.
Penrose Limits and Spacetime Singularities
We give a covariant characterisation of the Penrose plane wave limit: the
plane wave profile matrix is the restriction of the null geodesic
deviation matrix (curvature tensor) of the original spacetime metric to the
null geodesic, evaluated in a comoving frame. We also consider the Penrose
limits of spacetime singularities and show that for a large class of black
hole, cosmological and null singularities (of Szekeres-Iyer ``power-law
type''), including those of the FRW and Schwarzschild metrics, the result is a
singular homogeneous plane wave with profile , the scale
invariance of the latter reflecting the power-law behaviour of the
singularities.Comment: 9 pages, LaTeX2e; v2: additional references and cosmetic correction
The Refractive Index of Curved Spacetime II: QED, Penrose Limits and Black Holes
This work considers the way that quantum loop effects modify the propagation
of light in curved space. The calculation of the refractive index for scalar
QED is reviewed and then extended for the first time to QED with spinor
particles in the loop. It is shown how, in both cases, the low frequency phase
velocity can be greater than c, as found originally by Drummond and Hathrell,
but causality is respected in the sense that retarded Green functions vanish
outside the lightcone. A "phenomenology" of the refractive index is then
presented for black holes, FRW universes and gravitational waves. In some
cases, some of the polarization states propagate with a refractive index having
a negative imaginary part indicating a potential breakdown of the optical
theorem in curved space and possible instabilities.Comment: 62 pages, 14 figures, some signs corrected in formulae and graph
Scalar Field Probes of Power-Law Space-Time Singularities
We analyse the effective potential of the scalar wave equation near generic
space-time singularities of power-law type (Szekeres-Iyer metrics) and show
that the effective potential exhibits a universal and scale invariant leading
x^{-2} inverse square behaviour in the ``tortoise coordinate'' x provided that
the metrics satisfy the strict Dominant Energy Condition (DEC). This result
parallels that obtained in hep-th/0403252 for probes consisting of families of
massless particles (null geodesic deviation, a.k.a. the Penrose Limit). The
detailed properties of the scalar wave operator depend sensitively on the
numerical coefficient of the x^{-2}-term, and as one application we show that
timelike singularities satisfying the DEC are quantum mechanically singular in
the sense of the Horowitz-Marolf (essential self-adjointness) criterion. We
also comment on some related issues like the near-singularity behaviour of the
scalar fields permitted by the Friedrichs extension.Comment: v2: 21 pages, JHEP3.cls, one reference adde
On Penrose limit of elliptic branes
We discuss a Penrose limit of an elliptic brane configuration with NS5
and D4 branes. This background is T-dual to D3 branes at a fixed
point of a singularity and the T-duality
survives the Penrose limit. The triple scaling limit of and gives
rise to IIA pp-wave solution with a space-like compact direction. We identify
the quiver gauge theory operators and argue that upon exchange of the momentum
along the compact direction and the winding number these operators coincide
with the operators derived in the dual type IIB description. We also find a new
Penrose limit of the type IIB background and the corresponding limit in the
type IIA picture. In the coordinate system we use there are two manifest
space-like isometries. The quiver gauge theory operator duals of the string
states are built of three bosonic fields.Comment: 25 pages with 1 figur
On the pp-wave limit and the BMN structure of new Sasaki-Einstein spaces
We construct the pp-wave string associated with the Penrose limit of
and families of Sasaki-Einstein geometries. We identify
in the dual quiver gauge theories the chiral and the non-chiral operators that
correspond to the ground state and the first excited states. We present an
explicit identification in a prototype model of .Comment: 21 pages, JHEP format, 5 figures, acknowledgement correcte
- …