549 research outputs found
Hints of spin-orbit resonances in the binary black hole population
Binary black hole spin measurements from gravitational wave observations can reveal the binary's evolutionary history. In particular, the spin orientations of the component black holes within the orbital plane, and , can be used to identify binaries caught in the so-called spin-orbit resonances. In a companion paper, we demonstrate that and are best measured near the merger of the two black holes. In this work, we use these spin measurements to provide the first constraints on the full six-dimensional spin distribution of merging binary black holes. In particular, we find that there is a preference for in the population, which can be a signature of spin-orbit resonances. We also find a preference for with respect to the line of separation near merger, which has not been predicted for any astrophysical formation channel. However, the strength of these preferences depends on our prior choices, and we are unable to constrain the widths of the and distributions. Therefore, more observations are necessary to confirm the features we find. Finally, we derive constraints on the distribution of recoil kicks in the population, and use this to estimate the fraction of merger remnants retained by globular and nuclear star clusters. We make our spin and kick population constraints publicly available
Measuring binary black hole orbital-plane spin orientations
Binary black hole spins are among the key observables for gravitational wave astronomy. Among the spin parameters, their orientations within the orbital plane, , and , are critical for understanding the prevalence of the spin-orbit resonances and merger recoils in binary black holes. Unfortunately, these angles are particularly hard to measure using current detectors, LIGO and Virgo. Because the spin directions are not constant for precessing binaries, the traditional approach is to measure the spin components at some reference stage in the waveform evolution, typically the point at which the frequency of the detected signal reaches 20 Hz. However, we find that this is a poor choice for the orbital-plane spin angle measurements. Instead, we propose measuring the spins at a fixed dimensionless time or frequency near the merger. This leads to significantly improved measurements for and for several gravitational wave events. Furthermore, using numerical relativity injections, we demonstrate that will also be better measured near the merger for louder signals expected in the future. Finally, we show that numerical relativity surrogate models are key for reliably measuring the orbital-plane spin orientations, even at moderate signal-to-noise ratios like
Evidence of large recoil velocity from a black hole merger signal
The final black hole left behind after a binary black hole merger can attain a recoil velocity, or a "kick", reaching values up to 5000 km/s. This phenomenon has important implications for gravitational wave astronomy, black hole formation scenarios, testing general relativity, and galaxy evolution. We consider the gravitational wave signal from the binary black hole merger GW200129_065458 (henceforth referred to as GW200129), which has been shown to exhibit strong evidence of orbital precession. Using numerical relativity surrogate models, we constrain the kick velocity of GW200129 to km/s or km/s (one-sided limit), at 90\% credibility. This marks the first identification of a large kick velocity for an individual gravitational wave event. Given the kick velocity of GW200129, we estimate that there is a less than () probability that the remnant black hole after the merger would be retained by globular (nuclear star) clusters. Finally, we show that kick effects are not expected to cause biases in ringdown tests of general relativity for this event, although this may change in the future with improved detectors
Recommended from our members
All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run
We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approximately one second in the 32-4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant events have been found by either the unmodeled search or the cosmic string search. We thus present the search sensitivities for a variety of signal waveforms and report upper limits on the source rate density as a function of the characteristic frequency of the signal. These upper limits are a factor of 3 lower than the first observing run, with a 50% detection probability for gravitational-wave emissions with energies of ∼10-9 Mc2 at 153 Hz. For the search dedicated to cosmic string cusps we consider several loop distribution models, and present updated constraints from the same search done in the first observing run
Recommended from our members
Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs
When formed through dynamical interactions, stellar-mass binary black holes (BBHs) may retain eccentric orbits (e > 0.1 at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically formed binaries from isolated BBH mergers. Current template-based gravitational-wave searches do not use waveform models associated with eccentric orbits, rendering the search less efficient for eccentric binary systems. Here we present the results of a search for BBH mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. We carried out the search with the coherent WaveBurst algorithm, which uses minimal assumptions on the signal morphology and does not rely on binary waveform templates. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models. We rule out formation channels with rates ⪆100 Gpc-3 yr-1 for e > 0.1, assuming a black hole mass spectrum with a power-law index ≲2
Recommended from our members
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational
waves from the low-mass X-ray binary Scorpius X-1, using a hidden Markov model
(HMM) to track spin wandering. This search improves on previous HMM-based
searches of LIGO data by using an improved frequency domain matched filter, the
-statistic, and by analysing data from Advanced LIGO's second
observing run. In the frequency range searched, from to
, we find no evidence of gravitational radiation. At
, the most sensitive search frequency, we report an upper
limit on gravitational wave strain (at 95\% confidence) of when marginalising over source inclination angle. This is the
most sensitive search for Scorpius X-1, to date, that is specifically designed
to be robust in the presence of spin wandering
A Horizon Study for Cosmic Explorer: Science, Observatories, and Community
Gravitational-wave astronomy has revolutionized humanity's view of the universe. Investment in the field has rewarded the scientific community with the first direct detection of a binary black hole merger and the multimessenger observation of a neutron-star merger. Each of these was a watershed moment in astronomy, made possible because gravitational waves reveal the cosmos in a way that no other probe can. Since the first detection of gravitational waves in 2015, the National Science Foundation's LIGO and its partner observatory, the European Union's Virgo, have detected over fifty binary black hole mergers and a second neutron star merger -- a rate of discovery that has amazed even the most optimistic scientists.This Horizon Study describes a next-generation ground-based gravitational-wave observatory: Cosmic Explorer. With ten times the sensitivity of Advanced LIGO, Cosmic Explorer will push the gravitational-wave astronomy towards the edge of the observable universe (). This Horizon Study presents the science objective for Cosmic Explorer, and describes and evaluates its design concepts for. Cosmic Explorer will continue the United States' leadership in gravitational-wave astronomy in the international effort to build a "Third-Generation" (3G) observatory network that will make discoveries transformative across astronomy, physics, and cosmology
Follow-up analyses to the O3 LIGO-Virgo-KAGRA lensing searches
Along their path from source to observer, gravitational waves may be gravitationally lensed by massive objects leading to distortion in the signals. Searches for these distortions amongst the observed signals from the current detector network have already been carried out, though there have as yet been no confident detections. However, predictions of the observation rate of lensing suggest detection in the future is a realistic possibility. Therefore, preparations need to be made to thoroughly investigate the candidate lensed signals. In this work, we present some follow-up analyses that could be applied to assess the significance of such events and ascertain what information may be extracted about the lens-source system by applying these analyses to a number of O3 candidate events, even if these signals did not yield a high significance for any of the lensing hypotheses. These analyses cover the strong lensing, millilensing, and microlensing regimes. Applying these additional analyses does not lead to any additional evidence for lensing in the candidates that have been examined. However, it does provide important insight into potential avenues to deal with high-significance candidates in future observations
- …