100 research outputs found

    Technical Note: A trace gas climatology derived from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) data set

    Get PDF
    The Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS) aboard the Canadian satellite SCISAT (launched in August 2003) was designed to investigate the composition of the upper troposphere, stratosphere, and mesosphere. ACE-FTS utilizes solar occultation to measure temperature and pressure as well as vertical profiles of over thirty chemical species including O<sub>3</sub>, H<sub>2</sub>O, CH<sub>4</sub>, N<sub>2</sub>O, CO, NO, NO<sub>2</sub>, N<sub>2</sub>O<sub>5</sub>, HNO<sub>3</sub>, HCl, ClONO<sub>2</sub>, CCl<sub>3</sub>F, CCl<sub>2</sub>F<sub>2</sub>, and HF. Global coverage for each species is obtained approximately over a three month period and measurements are made with a vertical resolution of typically 3–4 km. A quality-controlled climatology has been created for each of these 14 baseline species, where individual profiles are averaged over the period of February 2004 to February 2009. Measurements used are from the ACE-FTS version 2.2 data set including updates for O<sub>3</sub> and N<sub>2</sub>O<sub>5</sub>. The climatological fields are provided on a monthly and three-monthly basis (DJF, MAM, JJA, SON) at 5 degree latitude and equivalent latitude spacing and on 28 pressure surfaces (26 of which are defined by the Stratospheric Processes And their Role in Climate (SPARC) Chemistry-Climate Model Validation Activity). The ACE-FTS climatological data set is available through the ACE website

    HCI and CIO Profiles Inside the Antarctic Vortex as Observed by Smiles in November 2009: Comparisons with MLS and ACE-FTS Instruments

    Get PDF
    We present vertical profiles of hydrogen chloride (HCl) and chlorine monoxide (ClO) as observed by the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the International Space Station (ISS) inside the Antarctic vortex on 19-24 November 2009. The SMILES HCl value reveals 2.8-3.1 ppbv between 450K and 500K levels in potential temperature (PT). The high value of HCl is highlighted since it is suggested that HCl is a main component of the total inorganic chlorine Cly, defined as Cly similar or equal to HCl + ClO + chlorine nitrate ClONO2, inside the Antarctic vortex in spring, owing to low ozone values. To confirm the quality of two SMILES level 2 (L2) data products provided by the Japan Aerospace Exploration Agency (JAXA) and Japan\u27s National Institute of Information and Communications Technology (NICT), vis-a-vis the partitioning of Cly, comparisons are made using other satellite data from the Aura Microwave Limb Sounder (MLS) and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). HCl values from the SMILES NICT L2 product agree to within 10% (0.3 ppbv) with the MLS HCl data between 450 and 575K levels in PT and with the ACE-FTS HCl data between 425 and 575 K. The SMILES JAXA L2 product is 10 to 20% (0.2-0.5 ppbv) lower than that from MLS between 400 and 700K and from ACE-FTS between 500 and 700 K. For ClO in daytime, the difference between SMILES (JAXA and NICT) and MLS is less than ±0.05 ppbv (100 %) between 500K and 650K with the ClO values less than 0.2 ppbv. ClONO2 values as measured by ACE-FTS also reveal 0.2 ppbv at 475-500K level, resulting in the HCl/Cly ratios of 0.91-0.95. The HCl/Cly ratios derived from each retrieval agree to within -5 to 8% with regard to their averages. The high HCl values and HCl/Cly ratios observed by the three instruments in the lower stratospheric Antarctic vortex are consistent with previous observations in late Austral spring

    Drift Corrected Trends and Periodic Variations in MIPAS IMK/IAA Ozone Measurements

    Get PDF
    Drifts, trends and periodic variations were calculated from monthly zonally averaged ozone profiles. The ozone profiles were derived from level-1b data of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) by means of the scientific level-2 processor run by the Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK). All trend and drift analyses were performed using a multilinear parametric trend model which includes a linear term, several harmonics with period lengths from 3 to 24 months and the quasi-biennial oscillation (QBO). Drifts at 2-sigma significance level were mainly negative for ozone relative to Aura MLS and Odin OSIRIS and negative or near zero for most of the comparisons to lidar measurements. Lidar stations used here include those at Hohenpeissenberg (47.8° N, 11.0 ° E), Lauder (45.0 ° S, 169.7 ° E), Mauna Loa (19.5 ° N, 155.6 ° W), Observatoire Haute Provence (43.9 ° N, 5.7 ° E) and Table Mountain (34.4 ° N, 117.7 ° W). Drifts against the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) were found to be mostly insignificant. The assessed MIPAS ozone trends cover the time period of July 2002 to April 2012 and range from -0.56 ppmv decade-1 to +0.48 ppmv decade-1 (-0.52 ppmv decade-1 to +0.47 ppmv decade-1 when displayed on pressure coordinates) depending on altitude/ pressure and latitude. From the empirical drift analyses we conclude that the real ozone trends might be slightly more positive/ less negative than those calculated from the MIPAS data, by conceding the possibility of MIPAS having a very small (approximately within -0.3 ppmv decade-1 negative drift for ozone. This leads to drift-corrected trends of -0.41 ppmv decade-1 to +0.55 ppmv decade-1 (-0.38 ppmv decade-1 to +0.53 ppmv decade-1 when displayed on pressure coordinates) for the time period covered by MIPAS Envisat measurements, with very few negative and large areas of positive trends at mid-latitudes for both hemispheres around and above 30 km (similar to 10 hPa). Negative trends are found in the tropics around 25 and 35 km (similar to 25 and 5 hPa), while an area of positive trends is located right above the tropical tropopause. These findings are in good agreement with the recent literature. Differences of the trends compared with the recent literature could be explained by a possible shift of the subtropical mixing barriers. Results for the altitude-latitude distribution of amplitudes of the quasi-biennial, annual and the semi-annual oscillation are overall in very good agreement with recent findings

    Global and long-term comparison of SCIAMACHY limb ozone profiles with correlative satellite data (2002–2008)

    Get PDF
    SCIAMACHY limb scatter ozone profiles from 2002 to 2008 have been compared with MLS (2005–2008), SABER (2002–2008), SAGE II (2002–2005), HALOE (2002–2005) and ACE-FTS (2004–2008) measurements. The comparison is performed for global zonal averages and heights from 10 to 50 km in one km steps. The validation was performed by comparing monthly mean zonal means and by comparing averages over collocated profiles within a zonal band and month. Both approaches yield similar results. For most of the stratosphere SCIAMACHY agrees to within 10% or better with other correlative data. A systematic bias of SCIAMACHY ozone of up to 100% between 10 and 20 km in the tropics points to some remaining issues with regard to convective cloud interference. Statistical hypothesis testing reveals at which altitudes and in which region differences between SCIAMACHY and other satellite data are statistically significant. We also estimated linear trends from monthly mean data for different periods where SCIAMACHY has common observations with other satellite data using a classical trend model with QBO and seasonal terms in order to draw conclusions on potential instrumental drifts as a function of latitude and altitude. Since the time periods considered here are rather short these trend estimates are only used to identify potential instrumental issues with the SCIAMACHY data. As a result SCIAMACHY exhibits a statistically significant negative trend in the range of of about 1–3% per year depending on latitude during the period 2002–2005 (overlapping with HALOE and SAGE II) and somewhat less during 2002–2008 (overlapping with SABER) in the altitude range of 30–40 km, while in the period 2004–2008 (overlapping with MLS and ACE-FTS) no significant trends are observed. Since all correlative satellite instruments do not show to a very large extent statistically significant trends in any of the time periods considered here, the negative trends observed with SCIAMACHY data point at some remaining instrumental artifact which is most likely related to residual errors in the tangent height registration of SCIAMACHY

    Validation of the Aura Microwave Limb Sounder HNOmeasurements

    Get PDF
    We assess the quality of the version 2.2 (v2.2) HNO3 measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System Aura satellite. The MLS HNO3 product has been greatly improved over that in the previous version (v1.5), with smoother profiles, much more realistic behavior at the lowest retrieval levels, and correction of a high bias caused by an error in one of the spectroscopy files used in v1.5 processing. The v2.2 HNO3 data are scientifically useful over the range 215 to 3.2 hPa, with single-profile precision of ∼0.7 ppbv throughout. Vertical resolution is 3–4 km in the upper troposphere and lower stratosphere, degrading to ∼5 km in the middle and upper stratosphere. The impact of various sources of systematic uncertainty has been quantified through a comprehensive set of retrieval simulations. In aggregate, systematic uncertainties are estimated to induce in the v2.2 HNO3 measurements biases that vary with altitude between ±0.5 and ±2 ppbv and multiplicative errors of ±5–15% throughout the stratosphere, rising to ∼±30% at 215 hPa. Consistent with this uncertainty analysis, comparisons with correlative data sets show that relative to HNO3 measurements from ground-based, balloon-borne, and satellite instruments operating in both the infrared and microwave regions of the spectrum, MLS v2.2 HNO3 mixing ratios are uniformly low by 10–30% throughout most of the stratosphere. Comparisons with in situ measurements made from the DC-8 and WB-57 aircraft in the upper troposphere and lowermost stratosphere indicate that the MLS HNO3 values are low in this region as well, but are useful for scientific studies (with appropriate averaging)

    Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview

    Get PDF
    We describe the design and execution of the BORTAS (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) experiment, which has the overarching objective of understanding the chemical aging of air masses that contain the emission products from seasonal boreal wildfires and how these air masses subsequently impact downwind atmospheric composition. The central focus of the experiment was a two-week deployment of the UK BAe-146-301 Atmospheric Research Aircraft (ARA) over eastern Canada, based out of Halifax, Nova Scotia. Atmospheric ground-based and sonde measurements over Canada and the Azores associated with the planned July 2010 deployment of the ARA, which was postponed by 12 months due to UK-based flights related to the dispersal of material emitted by the Eyjafjallajökull volcano, went ahead and constituted phase A of the experiment. Phase B of BORTAS in July 2011 involved the same atmospheric measurements, but included the ARA, special satellite observations and a more comprehensive ground-based measurement suite. The high-frequency aircraft data provided a comprehensive chemical snapshot of pyrogenic plumes from wildfires, corresponding to photochemical (and physical) ages ranging from 45 sr 10 days, largely by virtue of widespread fires over Northwestern Ontario. Airborne measurements reported a large number of emitted gases including semi-volatile species, some of which have not been been previously reported in pyrogenic plumes, with the corresponding emission ratios agreeing with previous work for common gases. Analysis of the NOy data shows evidence of net ozone production in pyrogenic plumes, controlled by aerosol abundance, which increases as a function of photochemical age. The coordinated ground-based and sonde data provided detailed but spatially limited information that put the aircraft data into context of the longer burning season in the boundary layer. Ground-based measurements of particulate matter smaller than 2.5 μm (PM2.5) over Halifax show that forest fires can on an episodic basis represent a substantial contribution to total surface PM2.5

    MIPAS IMK/IAA CFC-11 (CCl₃F) and CFC-12 (CCl₂F₂) measurements: accuracy, precision and long-term stability

    Get PDF
    Profiles of CFC-11 (CCl3F) and CFC-12 (CCl2F2) of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) abord the European satellite Envisat have been retrieved from versions MIPAS/4.61–MIPAS/4.62 and MIPAS/5.02–MIPAS/5.06 level-1b data using the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK) and Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Astrofísica de Andalucía (IAA). These profiles have been compared to measurements taken by the balloon borne Cryosampler, Mark IV (MkIV) and MIPAS-Balloon (MIPAS-B), the airborne MIPAS stratospheric aircraft (MIPAS-STR), the satellite borne Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) and the High Resolution Dynamic Limb Sounder (HIRDLS) as well as the ground based Halocarbon and other Atmospheric Trace Species (HATS) network for the reduced spectral resolution period (RR: January 2005–April 2012) of MIPAS Envisat. ACE-FTS, MkIV and HATS also provide measurements during the high spectral resolution period (FR: July 2002–March 2004) and were used to validate MIPAS Envisat CFC-11 and CFC-12 products during that time, as well as ILAS-II profiles. In general, we find that MIPAS Envisat shows slightly higher values for CFC-11 at the lower end of the profiles (below ~ 15 km) and in a comparison of HATS ground-based data and MIPAS Envisat measurements at 3 km below the tropopause. Differences range from approximately 10–50 pptv (~ 5–20 %) during the RR period. In general, differences are slightly smaller for the FR period. An indication of a slight high-bias at the lower end of the profile exists for CFC-12 as well, but this bias is far less pronounced than for CFC-11, so that differences at the lower end of the profile (below ~ 15 km) and in the comparison of HATS and MIPAS Envisat measurements taken at 3 km below the tropopause mainly stay within 10–50 pptv (~ 2–10 %) for the RR and the FR period. Above approximately 15 km, most comparisons are close to excellent, apart from ILAS-II, which shows large differences above ~ 17 km. Overall, percentage differences are usually smaller for CFC-12 than for CFC-11. For both species – CFC-11 and CFC-12 – we find that differences at the lower end of the profile tend to be larger at higher latitudes than in tropical and subtropical regions. In addition, MIPAS Envisat profiles have a maximum in the mixing ratio around the tropopause, which is most obvious in tropical mean profiles. Estimated measurement noise alone can, in most cases, not explain the standard deviation of the differences. This is attributed to error components not considered in the error estimate and also to natural variability which always plays a role when the compared instruments do not measure exactly the same air mass. Investigations concerning the temporal stability show very small negative drifts in MIPAS Envisat CFC-11 measurements. These drifts vary between ~ 1–3 % decade−1. For CFC-12, the drifts are also negative and close to zero up to ~ 30 km. Above that altitude larger drifts of up to ~ 50 % decade−1 appear which are negative up to ~ 35 km and positive, but of a similar magnitude, above
    corecore