15,506 research outputs found

    Preferential antiferromagnetic coupling of vacancies in graphene on SiO_2: Electron spin resonance and scanning tunneling spectroscopy

    Full text link
    Monolayer graphene grown by chemical vapor deposition and transferred to SiO_2 is used to introduce vacancies by Ar^+ ion bombardment at a kinetic energy of 50 eV. The density of defects visible in scanning tunneling microscopy (STM) is considerably lower than the ion fluence implying that most of the defects are single vacancies. The vacancies are characterized by scanning tunneling spectroscopy (STS) on graphene and HOPG exhibiting a peak close to the Fermi level. The peak persists after air exposure up to 180 min, albeit getting broader. After air exposure for less than 60 min, electron spin resonance (ESR) at 9.6 GHz is performed. For an ion flux of 10/nm^2, we find a signal corresponding to a g-factor of 2.001-2.003 and a spin density of 1-2 spins/nm^2. The ESR signal consists of a mixture of a Gaussian and a Lorentzian of equal weight exhibiting a width down to 0.17 mT, which, however, depends on details of the sample preparation. The g-factor anisotropy is about 0.02%. Temperature dependent measurements reveal antiferromagnetic correlations with a Curie-Weiss temperature of -10 K. Albeit the electrical conductivity of graphene is significantly reduced by ion bombardment, the spin resonance induced change in conductivity is below 10^{-5}.Comment: 10 pages, 5 figures, discussion on STM images in the literature of defects in graphene adde

    High-resolution imaging of ultracold fermions in microscopically tailored optical potentials

    Full text link
    We report on the local probing and preparation of an ultracold Fermi gas on the length scale of one micrometer, i.e. of the order of the Fermi wavelength. The essential tool of our experimental setup is a pair of identical, high-resolution microscope objectives. One of the microscope objectives allows local imaging of the trapped Fermi gas of 6Li atoms with a maximum resolution of 660 nm, while the other enables the generation of arbitrary optical dipole potentials on the same length scale. Employing a 2D acousto-optical deflector, we demonstrate the formation of several trapping geometries including a tightly focussed single optical dipole trap, a 4x4-site two-dimensional optical lattice and a 8-site ring lattice configuration. Furthermore, we show the ability to load and detect a small number of atoms in these trapping potentials. A site separation of down to one micrometer in combination with the low mass of 6Li results in tunneling rates which are sufficiently large for the implementation of Hubbard-models with the designed geometries.Comment: 15 pages, 6 figure

    Phase-sensitive detection of Bragg scattering at 1D optical lattices

    Full text link
    We report on the observation of Bragg scattering at 1D atomic lattices. Cold atoms are confined by optical dipole forces at the antinodes of a standing wave generated by the two counter-propagating modes of a laser-driven high-finesse ring cavity. By heterodyning the Bragg-scattered light with a reference beam, we obtain detailed information on phase shifts imparted by the Bragg scattering process. Being deep in the Lamb-Dicke regime, the scattered light is not broadened by the motion of individual atoms. In contrast, we have detected signatures of global translatory motion of the atomic grating.Comment: 4 pages, 4 figure

    Spin dynamics and magnetic interactions of Mn dopants in the topological insulator Bi2_2Te3_3

    Full text link
    The magnetic and electronic properties of the magnetically doped topological insulator Bi2−x_{\rm 2-x}Mnx_{\rm x}Te3_3 were studied using electron spin resonance (ESR) and measurements of static magnetization and electrical transport. The investigated high quality single crystals of Bi2−x_{\rm 2-x}Mnx_{\rm x}Te3_3 show a ferromagnetic phase transition for x≥0.04x\geq 0.04 at TC≈12T_{C}\approx 12 K. The Hall measurements reveal a p-type finite charge-carrier density. Measurements of the temperature dependence of the ESR signal of Mn dopants for different orientations of the external magnetic field give evidence that the localized Mn moments interact with the mobile charge carriers leading to a Ruderman-Kittel-Kasuya-Yosida-type ferromagnetic coupling between the Mn spins of order 2-3 meV. Furthermore, ESR reveals a low-dimensional character of magnetic correlations that persist far above the ferromagnetic ordering temperature

    Anomalous Phase Transition in Strained SrTiO3_3 Thin Films

    Full text link
    We have studied the cubic to tetragonal phase transition in epitaxial SrTiO3_3 films under various biaxial strain conditions using synchrotron X-ray diffraction. Measuring the superlattice peak associated with TiO6_6 octahedra rotation in the low temperature tetragonal phase indicates the presence of a phase transition whose critical temperature is a strong function of strain, with TC_C as much as 50K above the corresponding bulk temperature. Surprisingly, the lattice constants evolve smoothly through the transition with no indication of a phase change. This signals an important change in the nature of the phase transition due to the epitaxy strain and substrate clamping effect. The internal degrees of freedom (TiO6_6 rotations) have become uncoupled from the overall lattice shape.Comment: 4 pages, 3 figures, REVTeX

    Quantum-degenerate mixture of fermionic lithium and bosonic rubidium gases

    Full text link
    We report on the observation of sympathetic cooling of a cloud of fermionic 6-Li atoms which are thermally coupled to evaporatively cooled bosonic 87-Rb. Using this technique we obtain a mixture of quantum-degenerate gases, where the Rb cloud is colder than the critical temperature for Bose-Einstein condensation and the Li cloud colder than the Fermi temperature. From measurements of the thermalization velocity we estimate the interspecies s-wave triplet scattering length |a_s|=20_{-6}^{+9} a_B. We found that the presence of residual rubidium atoms in the |2,1> and the |1,-1> Zeeman substates gives rise to important losses due to inelastic collisions.Comment: 4 pages, 3 figure

    SNSF Career Tracker Cohorts (CTC) Newsletter 2022/2

    Get PDF
    As in our previous newsletter, we explore our first longitudinal dataset to give insights on working conditions and changes of professional values in the last years. The data include the first four waves (2018–2021) of the CTC-18 cohort, which consists of people who applied for Early Postdoc.Mobility or Postdoc.Mobility in fall 201
    • …
    corecore