34 research outputs found
Reforming a large lecture modern physics course for engineering majors using a PER-based design
We have reformed a large lecture modern physics course for engineering majors
by radically changing both the content and the learning techniques implemented
in lecture and homework. Traditionally this course has been taught in a manner
similar to the equivalent course for physics majors, focusing on mathematical
solutions of abstract problems. Based on interviews with physics and
engineering professors, we developed a syllabus and learning goals focused on
content that was more useful to our actual student population: engineering
majors. The content of this course emphasized reasoning development, model
building, and connections to real world applications. In addition we
implemented a variety of PER-based learning techniques, including peer
instruction, collaborative homework sessions, and interactive simulations. We
have assessed the effectiveness of reforms in this course using pre/post
surveys on both content and beliefs. We have found significant improvements in
both content knowledge and beliefs compared with the same course before
implementing these reforms and a corresponding course for physics majors.Comment: To be published in the Proceedings of the Physics Education Research
Conference 200
The Design and Validation of the Quantum Mechanics Conceptual Survey
The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of
students' conceptual understanding of quantum mechanics. It is intended to be
used to measure the relative effectiveness of different instructional methods
in modern physics courses. In this paper we describe the design and validation
of the survey, a process that included observations of students, a review of
previous literature and textbooks and syllabi, faculty and student interviews,
and statistical analysis. We also discuss issues in the development of specific
questions, which may be useful both for instructors who wish to use the QMCS in
their classes and for researchers who wish to conduct further research of
student understanding of quantum mechanics. The QMCS has been most thoroughly
tested in, and is most appropriate for assessment of (as a posttest only),
sophomore-level modern physics courses. We also describe testing with students
in junior quantum courses and graduate quantum courses, from which we conclude
that the QMCS may be appropriate for assessing junior quantum courses, but is
not appropriate for assessing graduate courses. One surprising result of our
faculty interviews is a lack of faculty consensus on what topics should be
taught in modern physics, which has made designing a test that is valued by a
majority of physics faculty more difficult than expected.Comment: Submitted to Physical Review Special Topics: Physics Education
Researc
Teaching and understanding of quantum interpretations in modern physics courses
Just as expert physicists vary in their personal stances on interpretation in
quantum mechanics, instructors vary on whether and how to teach interpretations
of quantum phenomena in introductory modern physics courses. In this paper, we
document variations in instructional approaches with respect to interpretation
in two similar modern physics courses recently taught at the University of
Colorado, and examine associated impacts on student perspectives regarding
quantum physics. We find students are more likely to prefer realist
interpretations of quantum-mechanical systems when instructors are less
explicit in addressing student ontologies. We also observe contextual
variations in student beliefs about quantum systems, indicating that
instructors who choose to address questions of ontology in quantum mechanics
should do so explicitly across a range of topics.Comment: 18 pages, references, plus 2 pages supplemental materials. 8 figures.
PACS: 01.40.Fk, 03.65.-
Resource Letter RBAI-1: Research-Based Assessment Instruments in Physics and Astronomy
Citation: Madsen, A., McKagan, S. B., & Sayre, E. C. (2017). Resource Letter RBAI-1: Research-Based Assessment Instruments in Physics and Astronomy. American Journal of Physics, 85(4), 245-264. doi:10.1119/1.4977416This resource letter provides a guide to Research-Based Assessment Instruments (RBAIs) of physics and astronomy content. These are standardized assessments that were rigorously developed and revised using student ideas and interviews, expert input, and statistical analyses. RBAIs have had a major impact on physics and astronomy education reform by providing a universal and convincing measure of student understanding that instructors can use to assess and improve the effectiveness of their teaching. In this resource letter, we present an overview of all content RBAIs in physics and astronomy by topic, research validation, instructional level, format, and themes, to help faculty find the best assessment for their course. More details about each RBAI available in physics and astronomy are available at PhysPort: physport. org/assessments. (C) 2017 American Association of Physics Teachers
Developing and Researching PhET simulations for Teaching Quantum Mechanics
Quantum mechanics is difficult to learn because it is counterintuitive, hard
to visualize, mathematically challenging, and abstract. The Physics Education
Technology (PhET) Project, known for its interactive computer simulations for
teaching and learning physics, now includes 18 simulations on quantum mechanics
designed to improve learning of this difficult subject. Our simulations include
several key features to help students build mental models and intuitions about
quantum mechanics: visual representations of abstract concepts and microscopic
processes that cannot be directly observed, interactive environments that
directly couple students' actions to animations, connections to everyday life,
and efficient calculations so students can focus on the concepts rather than
the math. Like all PhET simulations, these are developed using the results of
education research and feedback from educators, and are tested in student
interviews and classroom studies. This article provides an overview of the PhET
quantum simulations and their development. We also describe research
demonstrating their effectiveness and share some insights about student
thinking that we have gained from our research on quantum simulations.Comment: accepted by American Journal of Physics; v2 includes an additional
study, more explanation of research behind claims, clearer wording, and more
reference
A Study of Educational Simulations Part I - Engagement and Learning
Interactive computer simulations with complex representations and sophisticated graphics are a relatively new addition to the classroom, and research in this area is limited. We have conducted over 200 individual student interviews during which the students described what they were thinking as they interacted with simulations. These interviews were conducted as part of the research and design of simulations for the Physics Education Technology (PhET) project. PhET is an ongoing project that has developed over 60 simulations for use in teaching physics, chemistry, and physical science. These interviews are a rich source of information about how students interact with computer simulations and what makes an educationally effective simulation. We have observed that simulations can be highly engaging and educationally effective, but only if the student's interaction with the simulation is directed by the student's own questioning. Here we describe our design process, what features are effective for engaging students in educationally productive interactions and the underlying principles which support our empirically developed guidelines. In a companion paper we describe in detail the design features used to create an intuitive simulation for students to use
A Deeper Look at Student Learning of Quantum Mechanics: the Case of Tunneling
We report on a large-scale study of student learning of quantum tunneling in
4 traditional and 4 transformed modern physics courses. In the transformed
courses, which were designed to address student difficulties found in previous
research, students still struggle with many of the same issues found in other
courses. However, the reasons for these difficulties are more subtle, and many
new issues are brought to the surface. By explicitly addressing how to build
models of wave functions and energy and how to relate these models to real
physical systems, we have opened up a floodgate of deep and difficult questions
as students struggle to make sense of these models. We conclude that the
difficulties found in previous research are the tip of the iceberg, and the
real issue at the heart of student difficulties in learning quantum tunneling
is the struggle to build the complex models that are implicit in experts'
understanding but often not explicitly addressed in instruction.Comment: v2, v3 updated with more detailed analysis of data and discussion;
submitted to Phys. Rev. ST: PE