469 research outputs found
XPS characterization of Bi and Mn collected on atom-trapping silica for AAS
The chemical state of analyte species collected on a water-cooled silica tube during atom-trapping atomic absorption spectrometric determination is investigated with the use of X-ray photoelectron spectroscopy (XPS) for Bi and Mn. Analysis of the Bi 4f(7/2) peak reveals that the chemical state of Bi is +3 during initial trapping (before the atomization stage), but an additional 0-valence state of Bi is also observed after the atomization stage. With the use of the measured Mn 2p(3/2) binding energy together with the observed 3s multiplet splitting, the chemical state of Mn is determined as +2 in all stages. Together with our previous determination of 0 valence for Au, it is now postulated that the stability of certain valence states of the three elements (Au, Bi, and Mn) on the silica matrix can be correlated to their electrochemical reduction potentials
XPS characterization of Bi and Mn collected on atom-trapping silica for AAS
The chemical state of analyte species collected on a water-cooled silica tube during atom-trapping atomic absorption spectrometric determination is investigated with the use of X-ray photoelectron spectroscopy (XPS) for Bi and Mn. Analysis of the Bi 4f7/2 peak reveals that the chemical state of Bi is +3 during initial trapping (before the atomization stage), but an additional 0-valence state of Bi is also observed after the atomization stage. With the use of the measured Mn 2p3/2 binding energy together with the observed 3s multiplet splitting, the chemical state of Mn is determined as +2 in all stages. Together with our previous determination of 0 valence for Au, it is now postulated that the stability of certain valence states of the three elements (Au, Bi, and Mn) on the silica matrix can be correlated to their electrochemical reduction potentials
Quantum communication networks with optical vortices
Quantum communications bring a paradigm change in internet security by using
quantum resources to establish secure keys between parties. Present-day quantum
communications networks are mainly point-to-point and use trusted nodes and key
management systems to relay the keys. Future quantum networks, including the
quantum internet, will have complex topologies in which groups of users are
connected and communicate with each-other. Here we investigate several
architectures for quantum communication networks. We show that photonic orbital
angular momentum (OAM) can be used to route quantum information between
different nodes. Starting from a simple, point-to-point network, we will
gradually develop more complex architectures: point-to-multipoint,
fully-connected and entanglement-distribution networks. As a particularly
important result, we show that an -node, fully-connected network can be
constructed with a single OAM sorter and OAM values. Our results pave the
way to construct complex quantum communication networks with minimal resources.Comment: 10 pages, 9 figure
X-ray photoelectron spectroscopic characterization of Au collected with atom trapping on silica for atomic absorption spectrometry
The nature of analyte species collected on a cooled silica tube for atom-trapping atomic absorption spectrometric determination was investigated with the use of X-ray photoelctron spectroscopy (XPS). An XPS spectrum of gold deposited on atom-trapping silica tubes reveals a Au 4f7/2 peak with a binding energy of 84.8 (±0.2) eV, which falls in the middle of the binding energies corresponding to zerovalent Au(0) at 84.0 eV and that of monovalent Au(I) at 85.2 eV. The corresponding energy for Au vapor deposited on silica is also 84.8 eV. Deposition of AuCl4- solution on silica results in two different Au 4f7/2 peaks with binding energies of 84.8 and 87.3 eV corresponding, respectively, to Au(0) and Au(III). Deposition of the same AuCl4- solution on platinum metal again gives two peaks, this time at 84.4 and 87.0 eV energies corresponding again to Au(0) and Au(III). Combining all these data, we conclude that gold is trapped on atom-trapping silica surface as zerovalent Au(0) with a 0.8-eV matrix shift with respect to the metal surface. A similar 0.6-eV shift is also observed between the binding energy of 4f7/2 Hg22+ measured in Hg2(NO3)2·2H2O powder and that deposited on silica
Mitochondria as a Target of Environmental Toxicants
Enormous strides have recently been made in our understanding of the biology and pathobiology of mitochondria. Many diseases have been identified as caused by mitochondrial dysfunction, and many pharmaceuticals have been identified as previously unrecognized mitochondrial toxicants. A much smaller but growing literature indicates that mitochondria are also targeted by environmental pollutants. We briefly review the importance of mitochondrial function and maintenance for health based on the genetics of mitochondrial diseases and the toxicities resulting from pharmaceutical exposure. We then discuss how the principles of mitochondrial vulnerability illustrated by those fields might apply to environmental contaminants, with particular attention to factors that may modulate vulnerability including genetic differences, epigenetic interactions, tissue characteristics, and developmental stage. Finally, we review the literature related to environmental mitochondrial toxicants, with a particular focus on those toxicants that target mitochondrial DNA. We conclude that the fields of environmental toxicology and environmental health should focus more strongly on mitochondri
Farkl ı Ortamlarda Yeti ştirilen Biber Bitkisi Capsicum annuum L. nin Kök Parametrelerindeki Değişimler
Bu araşt ı rmada toprağa deği şik oranlarda peat ilave edilerek haz ı rlanmış 4 farkl ı yetiştirme ortam ı nda yetiştirilen biber bitkisi Capsicum annuum L. ' nin kök parametreleri belirlenmi ştir. Araşt ı rmadan elde edilen sonuçlara göre ortamda peat miktar ı artt ı kça kök uzunluğu, kök alan ı , kök hacmi, kök ve tepe ağı rl ı klar ı azalma gösterirken, tepe/kök oran ı nda bir art ış meydana gelmiştir. Istatistiksel olarak, kök çap ı hariç bütün kök parametrelerindeki değişimler önemli bulunmuştur
The integrated stress response remodels the microtubule-organizing center to clear unfolded proteins following proteotoxic stress
Cells encountering stressful situations activate the integrated stress response (ISR) pathway to limit protein synthesis and redirect translation to better cope. The ISR has also been implicated in cancers, but redundancies in the stress-sensing kinases that trigger the ISR have posed hurdles to dissecting physiological relevance. To overcome this challenge, we targeted the regulatory node of these kinases, namely, the S51 phosphorylation site of eukaryotic translation initiation factor eIF2α and genetically replaced eIF2α with eIF2α-S51A in mouse squamous cell carcinoma (SCC) stem cells of skin. While inconsequential under normal growth conditions, the vulnerability of this ISR-null state was unveiled when SCC stem cells experienced proteotoxic stress. Seeking mechanistic insights into the protective roles of the ISR, we combined ribosome profiling and functional approaches to identify and probe the functional importance of translational differences between ISR-competent and ISR-null SCC stem cells when exposed to proteotoxic stress. In doing so, we learned that the ISR redirects translation to centrosomal proteins that orchestrate the microtubule dynamics needed to efficiently concentrate unfolded proteins at the microtubule-organizing center so that they can be cleared by the perinuclear degradation machinery. Thus, rather than merely maintaining survival during proteotoxic stress, the ISR also functions in promoting cellular recovery once the stress has subsided. Remarkably, this molecular program is unique to transformed skin stem cells, hence exposing a vulnerability in cancer that could be exploited therapeutically
Thermal Characterization of Polycrystalline CVD Diamond Thin Films
An experimental thermal characterization method is developed for high thermal conductivity thin films. The method utilizes Ta/Pt resistors on microfabricated free-standing thin film structures both for heating and temperature monitoring at different positions on the structures. The steady-state temperature at the heater and the sensor positions are monitored as a function of the power dissipated by the heater under vacuum environment, and the thermal conductivity is estimated by comparing these results to FEA and/or analytical models. The developed method is used to characterize the thermal conductivity of various different CVD diamond films of different grain sizes and films thicknesses. The measured thermal conductivity values range from 15 W/m·K to 300 W/m·K, which are at least one order of magnitude lower than that of natural diamond. It is also shown that the thermal conductivity of such films in the in-plane direction increases with increasing grain size and film
Complementarity, quantum erasure and delayed choice with modified Mach-Zehnder interferometers
Often cited dictums in Quantum Mechanics include "observation disturbance
causes loss of interference" and "ignorance is interference". In this paper we
propose and describe a series of experiments with modified Mach-Zehnder
interferometers showing that one has to be careful when applying such dictums.
We are able to show that without interacting in any way with the light quantum
(or quanta) expected to behave "wave-like", interference fringes can be lost by
simply gaining (or having the potential to gain) the which-path knowledge.
Erasing this information may revive the interference fringes. Delayed choice
can be added, arriving to an experiment in line with Wheeler's original
proposal. We also show that ignorance is not always synonym with having the
interference fringes. The often-invoked "collapse of the wavefunction" is found
to be a non-necessary ingredient to describe our experiments.Comment: 8 pages, 3 figures; to appear in EPJ
An international comparative study of blood pressure in populations of European vs. African descent
Background: The consistent finding of higher prevalence of hypertension in US blacks compared
to whites has led to speculation that African-origin populations are particularly susceptible to this
condition. Large surveys now provide new information on this issue.
Methods: Using a standardized analysis strategy we examined prevalence estimates for 8 white
and 3 black populations (N = 85,000 participants).
Results: The range in hypertension prevalence was from 27 to 55% for whites and 14 to 44% for
blacks.
Conclusions: These data demonstrate that not only is there a wide variation in hypertension
prevalence among both racial groups, the rates among blacks are not unusually high when viewed
internationally. These data suggest that the impact of environmental factors among both
populations may have been under-appreciated
- …