45 research outputs found

    Spectroscopic evidence for temperature-dependent convergence of light and heavy hole valence bands of PbQ (Q=Te, Se, S)

    Full text link
    We have conducted temperature dependent Angle Resolved Photoemission Spectroscopy (ARPES) study of the electronic structures of PbTe, PbSe and PbS. Our ARPES data provide direct evidence for the \emph{light} hole upper valence bands (UVBs) and hitherto undetected \emph{heavy} hole lower valence bands (LVBs) in these materials. An unusual temperature dependent relative movement between these bands leads to a monotonic decrease in the energy separation between their maxima with increasing temperature, which is referred as band convergence and has long been believed to be the driving factor behind extraordinary thermoelectric performances of these compounds at elevated temperatures.Comment: 6 pages, 4 figures. arXiv admin note: text overlap with arXiv:1404.180

    The inexorable resistance of inertia determines the initial regime of drop coalescence

    Get PDF
    Drop coalescence is central to diverse processes involving dispersions of drops in industrial, engineering and scientific realms. During coalescence, two drops first touch and then merge as the liquid neck connecting them grows from initially microscopic scales to a size comparable to the drop diameters. The curvature of the interface is infinite at the point where the drops first make contact, and the flows that ensue as the two drops coalesce are intimately coupled to this singularity in the dynamics. Conventionally, this process has been thought to have just two dynamical regimes: a viscous and an inertial regime with a crossover region between them. We use experiments and simulations to reveal that a third regime, one that describes the initial dynamics of coalescence for all drop viscosities, has been missed. An argument based on force balance allows the construction of a new coalescence phase diagram

    Formation of beads-on-a-string structures during break-up of viscoelastic filaments

    Get PDF
    Break-up of viscoelastic filaments is pervasive in both nature and technology. If a filament is formed by placing a drop of saliva between a thumb and forefinger and is stretched, the filament’s morphology close to break-up corresponds to beads of several sizes interconnected by slender threads. Although there is general agreement that formation of such beads-on-a-string (BOAS) structures occurs only for viscoelastic fluids, the underlying physics remains unclear and controversial. The physics leading to the formation of BOAS structures is probed by numerical simulation. Computations reveal that viscoelasticity alone does not give rise to a small, satellite bead between two much larger main beads but that inertia is required for its formation. Viscoelasticity, however, enhances the growth of the bead and delays pinch-off, which leads to a relatively long-lived beaded structure. We also show for the first time theoretically that yet smaller, sub-satellite beads can also form as seen in experiments.National Science Foundation (U.S.). ERC-SOPS (EEC-0540855)Nanoscale Interdisciplinary Research Thrust on 'Directed Self-assembly of Suspended Polymer Fibers' (NSF-DMS0506941

    A New Proposed Algorithm for OBBx-index Structure

    No full text

    Moving Object indexing using Crossbreed Update

    No full text

    A Survey on Spatio-Temporal Access Methods

    No full text

    Wideband 40 Gbit/s WDM transmission under higher-order-mode fibre dispersion management

    No full text
    corecore