45 research outputs found
Spectroscopic evidence for temperature-dependent convergence of light and heavy hole valence bands of PbQ (Q=Te, Se, S)
We have conducted temperature dependent Angle Resolved Photoemission
Spectroscopy (ARPES) study of the electronic structures of PbTe, PbSe and PbS.
Our ARPES data provide direct evidence for the \emph{light} hole upper valence
bands (UVBs) and hitherto undetected \emph{heavy} hole lower valence bands
(LVBs) in these materials. An unusual temperature dependent relative movement
between these bands leads to a monotonic decrease in the energy separation
between their maxima with increasing temperature, which is referred as band
convergence and has long been believed to be the driving factor behind
extraordinary thermoelectric performances of these compounds at elevated
temperatures.Comment: 6 pages, 4 figures. arXiv admin note: text overlap with
arXiv:1404.180
The inexorable resistance of inertia determines the initial regime of drop coalescence
Drop coalescence is central to diverse processes involving dispersions of
drops in industrial, engineering and scientific realms. During coalescence, two
drops first touch and then merge as the liquid neck connecting them grows from
initially microscopic scales to a size comparable to the drop diameters. The
curvature of the interface is infinite at the point where the drops first make
contact, and the flows that ensue as the two drops coalesce are intimately
coupled to this singularity in the dynamics. Conventionally, this process has
been thought to have just two dynamical regimes: a viscous and an inertial
regime with a crossover region between them. We use experiments and simulations
to reveal that a third regime, one that describes the initial dynamics of
coalescence for all drop viscosities, has been missed. An argument based on
force balance allows the construction of a new coalescence phase diagram
Formation of beads-on-a-string structures during break-up of viscoelastic filaments
Break-up of viscoelastic filaments is pervasive in both nature and technology. If a filament is formed by placing a drop of saliva between a thumb and forefinger and is stretched, the filament’s morphology close to break-up corresponds to beads of several sizes interconnected by slender threads. Although there is general agreement that formation of such beads-on-a-string (BOAS) structures occurs only for viscoelastic fluids, the underlying physics remains unclear and controversial. The physics leading to the formation of BOAS structures is probed by numerical simulation. Computations reveal that viscoelasticity alone does not give rise to a small, satellite bead between two much larger main beads but that inertia is required for its formation. Viscoelasticity, however, enhances the growth of the bead and delays pinch-off, which leads to a relatively long-lived beaded structure. We also show for the first time theoretically that yet smaller, sub-satellite beads can also form as seen in experiments.National Science Foundation (U.S.). ERC-SOPS (EEC-0540855)Nanoscale Interdisciplinary Research Thrust on 'Directed Self-assembly of Suspended Polymer Fibers' (NSF-DMS0506941
High Resolution Chemical Composition of SiGe Layers for Photovoltaics by X-ray Photoemission Electron Microscopy (XPEEM)
Abstract not Available.</jats:p
