1,630 research outputs found

    The Variance of QSO Counts in Cells

    Full text link
    {}From three quasar samples with a total of 1038 objects in the redshift range 1.0÷2.21.0 \div 2.2 we measure the variance σ2\sigma^2 of counts in cells of volume VuV_u. By a maximum likelihood analysis applied separately on these samples we obtain estimates of σ2(ℓ)\sigma^2(\ell), with ℓ≡Vu1/3\ell \equiv V_u^{1/3}. The analysis from a single catalog for ℓ= 40 h−1\ell = ~40~h^{-1} Mpc and from a suitable average over the three catalogs for ℓ= 60, 80\ell = ~60,~80 and 100 h−1100~h^{-1} Mpc, gives σ2(ℓ)=0.46−0.27+0.27\sigma^2(\ell) = 0.46^{+0.27}_{-0.27}, 0.18−0.15+0.140.18^{+0.14}_{-0.15}, 0.05−0.05+0.140.05^{+0.14}_{-0.05} and 0.12−0.12+0.130.12^{+0.13}_{-0.12}, respectively, where the 70%70\% confidence ranges account for both sampling errors and statistical fluctuations in the counts. This allows a comparison of QSO clustering on large scales with analogous data recently obtained both for optical and IRAS galaxies: QSOs seem to be more clustered than these galaxies by a biasing factor bQSO/bgal∼1.4−2.3b_{QSO}/b_{gal} \sim 1.4 - 2.3.Comment: 13 pages in plain Tex, 5 figures available in postscript in a separate file, submitted to ApJ, DAPD-33

    ALMA imaging of SDP.81 - I. A pixelated reconstruction of the far-infrared continuum emission

    Get PDF
    We present a sub-50 pc-scale analysis of the gravitational lens system SDP.81 at redshift 3.042 using Atacama Large Millimetre/submillimetre Array (ALMA) science verification data. We model both the mass distribution of the gravitational lensing galaxy and the pixelated surface brightness distribution of the background source using a novel Bayesian technique that fits the data directly in visibility space. We find the 1 and 1.3 mm dust emission to be magnified by a factor of u_tot = 17.6+/-0.4, giving an intrinsic total star-formation rate of 315+/-60 M_sol/yr and a dust mass of 6.4+/-1.5*10^8 M_sol. The reconstructed dust emission is found to be non-uniform, but composed of multiple regions that are heated by both diffuse and strongly clumped star-formation. The highest surface brightness region is a ~1.9*0.7 kpc disk-like structure, whose small extent is consistent with a potential size-bias in gravitationally lensed starbursts. Although surrounded by extended star formation, with a density of 20-30+/-10 M_sol/yr/kpc^2, the disk contains three compact regions with densities that peak between 120-190+/-20 M_sol/yr/kpc^2. Such star-formation rate densities are below what is expected for Eddington-limited star-formation by a radiation pressure supported starburst. There is also a tentative variation in the spectral slope of the different star-forming regions, which is likely due to a change in the dust temperature and/or opacity across the source.Comment: MNRAS accepted 2015 April 1

    ALMA imaging of SDP.81 - II. A pixelated reconstruction of the CO emission lines

    Get PDF
    We present a sub-100 pc-scale analysis of the CO molecular gas emission and kinematics of the gravitational lens system SDP.81 at redshift 3.042 using Atacama Large Millimetre/submillimetre Array (ALMA) science verification data and a visibility-plane lens reconstruction technique. We find clear evidence for an excitation dependent structure in the unlensed molecular gas distribution, with emission in CO (5-4) being significantly more diffuse and structured than in CO (8-7). The intrinsic line luminosity ratio is r_8-7/5-4 = 0.30 +/- 0.04, which is consistent with other low-excitation starbursts at z ~ 3. An analysis of the velocity fields shows evidence for a star-forming disk with multiple velocity components that is consistent with a merger/post-coalescence merger scenario, and a dynamical mass of M(< 1.56 kpc) = 1.6 +/- 0.6 x 10^10 M_sol . Source reconstructions from ALMA and the Hubble Space Telescope show that the stellar component is offset from the molecular gas and dust components. Together with Karl G. Jansky Very Large Array CO (1-0) data, they provide corroborative evidence for a complex ~2 kpc-scale starburst that is embedded within a larger ~15 kpc structure.Comment: MNRAS accepted, 6th July 201

    Self-tuned quantum dot gain in photonic crystal lasers

    Full text link
    We demonstrate that very few (1 to 3) quantum dots as a gain medium are sufficient to realize a photonic crystal laser based on a high-quality nanocavity. Photon correlation measurements show a transition from a thermal to a coherent light state proving that lasing action occurs at ultra-low thresholds. Observation of lasing is unexpected since the cavity mode is in general not resonant with the discrete quantum dot states and emission at those frequencies is suppressed. In this situation, the quasi-continuous quantum dot states become crucial since they provide an energy-transfer channel into the lasing mode, effectively leading to a self-tuned resonance for the gain medium.Comment: 4 pages, 4 figures, submitted to Phys. Re

    Human leucocyte antigen diversity: a biological gift to escape infections, no longer a barrier for haploidentical hemopoietic stem cell transplantation

    Get PDF
    Since the beginning of life, every multicellular organism appeared to have a complex innate immune system although the adaptive immune system, centred on lymphocytes bearing antigen receptors generated by somatic recombination, arose in jawed fish approximately 500 million years ago. The major histocompatibility complex MHC, named the Human leucocyte antigen (HLA) system in humans, represents a vital function structure in the organism by presenting pathogen-derived peptides to T cells as the main initial step of the adaptive immune response. The huge level of polymorphism observed in HLA genes definitely reflects selection, favouring heterozygosity at the individual or population level, in a pathogen-rich environment, although many are located in introns or in exons that do not code for the antigen-biding site of the HLA. Over the past three decades, the extent of allelic diversity at HLA loci has been well characterized using high-resolution HLA-DNA typing and the number of new HLA alleles, produced through next-generation sequencing methods, is even more rapidly increasing. The level of the HLA system polymorphism represents an obstacle to the search of potential compatible donors for patients affected by haematological disease proposed for a hematopoietic stem cell transplant (HSCT). Data reported in literature clearly show that antigenic and/or allelic mismatches between related or unrelated donors and patients influences the successful HSCT outcome. However, the recent development of the new transplant strategy based on the choice of haploidentical donors for HSCT is questioning the role of HLA compatibility, since the great HLA disparities present do not worsen the overall clinical outcome. Nowadays, NGS has contributed to define at allelic levels the HLA polymorphism and solve potential ambiguities. However, HLA functions and tissue typing probably need to be further investigated in the next future, to understand the reasons why in haploidentical transplants the presence of a whole mismatch haplotype between donors and recipients, both the survival rate and the incidence of acute GvHD or graft rejection are similar to those reported for unrelated HSCTs

    Simulations of Galactic Cosmic Rays Impacts on the Herschel/PACS Photoconductor Arrays with Geant4 Code

    Get PDF
    We present results of simulations performed with the Geant4 software code of the effects of Galactic Cosmic Ray impacts on the photoconductor arrays of the PACS instrument. This instrument is part of the ESA-Herschel payload, which will be launched in late 2007 and will operate at the Lagrangian L2 point of the Sun-Earth system. Both the Satellite plus the cryostat (the shield) and the detector act as source of secondary events, affecting the detector performance. Secondary event rates originated within the detector and from the shield are of comparable intensity. The impacts deposit energy on each photoconductor pixel but do not affect the behaviour of nearby pixels. These latter are hit with a probability always lower than 7%. The energy deposited produces a spike which can be hundreds times larger than the noise. We then compare our simulations with proton irradiation tests carried out for one of the detector modules and follow the detector behaviour under 'real' conditions.Comment: paper submitted to Experimental Astronomy in March 200

    Stability Test For Sorghum Mutant Lines Derived From Induced Mutations with Gamma-Ray Irradiation

    Get PDF
    Sorghum breeding program had been conducted at the Center for the Application of Isotopes and Radiation Technology, BATAN. Plant genetic variability was increased through induced mutations using gamma-ray irradiation. Through selection process in successive generations, some promising mutant lines had been identified to have good agronomic characteristics with high grain yield. These breeding lines were tested in multi location trials and information of the genotypic stability was obtained to meet the requirements for officially varietal release by the Ministry of Agriculture. A total of 11 sorghum lines and varieties consisting of 8 mutant lines derived from induced mutations (B-100, B-95, B-92, B-83, B-76, B-75, B-69 and Zh-30) and 3 control varieties (Durra, UPCA-S1 and Mandau) were included in the experiment. All materials were grown in 10 agro-ecologically different locations namely Gunungkidul, Bantul, Citayam, Garut, Lampung, Bogor, Anyer, Karawaci, Cianjur and Subang. In each location, the local adaptability test was conducted by randomized block design with 3 replications. Data of grain yield was used for evaluating genotypic stability using AMMI approach. Results revealed that sorghum mutation breeding had generated 3 mutant lines (B-100, B-76 and Zh-30) exhibiting grain yield significantly higher than the control varieties. These mutant lines were genetically stable in all locations so that they would be recommended for official release as new sorghum varieties to the Ministry of Agriculture.Received: 20 November 2010; Revised: 01 August 2011; Accepted: 05 August 201

    Photon correlations in a two-site non-linear cavity system under coherent drive and dissipation

    Full text link
    We calculate the normalized second-order correlation function for a system of two tunnel-coupled photonic resonators, each one exhibiting a single-photon nonlinearity of the Kerr type. We employ a full quantum formulation: the master equation for the model, which takes into account both a coherent continuous drive and radiative as well as non-radiative dissipation channels, is solved analytically in steady state through a perturbative approach, and the results are compared to exact numerical simulations. The degree of second-order coherence displays values between 0 and 1, and divides the diagram identified by the two energy scales of the system - the tunneling and the nonlinear Kerr interaction - into two distinct regions separated by a crossover. When the tunneling term dominates over the nonlinear one, the system state is delocalized over both cavities and the emitted light is coherent. In the opposite limit, photon blockade sets in and the system shows an insulator-like state with photons locked on each cavity, identified by antibunching of emitted light.Comment: 9 pages, 4 figures, to appear in Phys. Rev.
    • …
    corecore