946 research outputs found

    Relativistic Images in Randall-Sundrum II Braneworld Lensing

    Get PDF
    In this paper, we explore the properties of gravitational lensing by black holes in the Randall-Sundrum II braneworld. We use numerical techniques to calculate lensing observables using the Tidal Reissner-Nordstrom (TRN) and Garriga-Tanaka metrics to examine supermassive black holes and primordial black holes. We introduce a new way tp parameterize tidal charge in the TRN metric which results in a large increase in image magnifications for braneworld primordial black holes compared to their 4 dimensional analogues. Finally, we offer a mathematical analysis that allows us to analyze the validity of the logarithmic approximation of the bending angle for any static, spherically symmetric metric. We apply this to the TRN metric and show that it is valid for any amount of tidal charge.Comment: 13 pages, 3 figures; Accepted for Publication in Physical Review

    Evaluation Of Satellite-Retrieved Extreme Precipitation Rates Across the Central United States

    Get PDF
    Water resources management, forecasting, and decision making require reliable estimates of precipitation. Extreme precipitation events are of particular importance because of their severe impact on the economy, the environment, and the society. In recent years, the emergence of various satellite-retrieved precipitation products with high spatial resolutions and global coverage have resulted in new sources of uninterrupted precipitation estimates. However, satellite-based estimates are not well integrated into operational and decision-making applications because of a lack of information regarding the associated uncertainties and reliability of these products. In this study, four satellite-derived precipitation products (CMORPH, PERSIANN, TMPA-RT, and TMPA-V6) are evaluated with respect to their performance in capturing precipitation extremes. The Stage IV (radar-based, gauge-adjusted) precipitation estimates are used as reference data. The results show that with respect to the probability of detecting extremes and the volume of correctly identified precipitation, CMORPH and PERSIANN data sets lead to better estimates. However, their false alarm ratio and volume are higher than those of TMPA-RT and TMPA-V6. Overall, no single precipitation product can be considered ideal for detecting extreme events. In fact, all precipitation products tend to miss a significant volume of rainfall. With respect to verification metrics used in this study, the performance of all satellite products tended to worsen as the choice of extreme precipitation threshold increased. The analyses suggest that extensive efforts are necessary to develop algorithms that can capture extremes more reliably

    Guided nuclear exploration increases CTCF target search efficiency.

    Get PDF
    The enormous size of mammalian genomes means that for a DNA-binding protein the number of nonspecific, off-target sites vastly exceeds the number of specific, cognate sites. How mammalian DNA-binding proteins overcome this challenge to efficiently locate their target sites is not known. Here, through live-cell single-molecule tracking, we show that CCCTC-binding factor, CTCF, is repeatedly trapped in small zones that likely correspond to CTCF clusters, in a manner that is largely dependent on an internal RNA-binding region (RBRi). We develop a new theoretical model called anisotropic diffusion through transient trapping in zones to explain CTCF dynamics. Functionally, transient RBRi-mediated trapping increases the efficiency of CTCF target search by ~2.5-fold. Overall, our results suggest a 'guided' mechanism where CTCF clusters concentrate diffusing CTCF proteins near cognate binding sites, thus increasing the local ON-rate. We suggest that local guiding may allow DNA-binding proteins to more efficiently locate their target sites

    Neurocognitive Predictors of Treatment Response to Randomized Treatment in Adults with Tic Disorders

    Get PDF
    Tourette\u27s disorder (TS) and chronic tic disorder (CTD) are neurodevelopmental disorders characterized by involuntary vocal and motor tics. Consequently, TS/CTD have been conceptualized as disorders of cognitive and motor inhibitory control. However, most neurocognitive studies have found comparable or superior inhibitory capacity among individuals with TS/CTD relative to healthy controls. These findings have led to the hypothesis that individuals with TS/CTD develop increased inhibitory control due to the constant need to inhibit tics. However, the role of cognitive control in TS/CTD is not yet understood, particularly in adults. To examine the role of inhibitory control in TS/CTD, the present study investigated this association by assessing the relationship between inhibitory control and treatment response in a large sample of adults with TS/CTD. As part of a large randomized trial comparing behavior therapy versus supportive psychotherapy for TS/CTD, a battery of tests, including tests of inhibitory control was administered to 122 adults with TS/CTD at baseline. We assessed the association between neuropsychological test performance and change in symptom severity, as well as compared the performance of treatment responders and non-responders as defined by the Clinical Global Impression Scale. Results indicated that change in symptoms, and treatment response were not associated with neuropsychological performance on tests of inhibitory control, intellectual ability, or motor function, regardless of type of treatment. The finding that significant change in symptom severity of TS/CTD patients is not associated with impairment or change in inhibitory control regardless of treatment type suggests that inhibitory control may not be a clinically relevant facet of these disorders in adults

    First Passage Distributions in a Collective Model of Anomalous Diffusion with Tunable Exponent

    Full text link
    We consider a model system in which anomalous diffusion is generated by superposition of underlying linear modes with a broad range of relaxation times. In the language of Gaussian polymers, our model corresponds to Rouse (Fourier) modes whose friction coefficients scale as wavenumber to the power 2−z2-z. A single (tagged) monomer then executes subdiffusion over a broad range of time scales, and its mean square displacement increases as tαt^\alpha with α=1/z\alpha=1/z. To demonstrate non-trivial aspects of the model, we numerically study the absorption of the tagged particle in one dimension near an absorbing boundary or in the interval between two such boundaries. We obtain absorption probability densities as a function of time, as well as the position-dependent distribution for unabsorbed particles, at several values of α\alpha. Each of these properties has features characterized by exponents that depend on α\alpha. Characteristic distributions found for different values of α\alpha have similar qualitative features, but are not simply related quantitatively. Comparison of the motion of translocation coordinate of a polymer moving through a pore in a membrane with the diffusing tagged monomer with identical α\alpha also reveals quantitative differences.Comment: LaTeX, 10 pages, 8 eps figure

    Surgical emergencies confounded by H1N1 influenza infection - a plea for concern

    Get PDF
    The outbreak of the H1N1 influenza pandemic resulted in unprecedented, overwhelming exposure in the medical and lay media, with the obvious focus of healthcare providers being on patients in internal medicine or intensive care settings. Recently, we treated 3 patients with various surgical emergencies who were also diagnosed with active H1N1 influenza. The purpose of this report is to bring the issue of H1N1 flu in association with surgical emergencies to the forefront of the literature, and suggest that surgical diseases might be significantly accentuated in patients with H1N1 influenza

    Strong Gravitational Lensing by Sgr A*

    Full text link
    In recent years, there has been increasing recognition of the potential of the galactic center as a probe of general relativity in the strong field. There is almost certainly a black hole at Sgr A* in the galactic center, and this would allow us the opportunity to probe dynamics near the exterior of the black hole. In the last decade, there has been research into extreme gravitational lensing in the galactic center. Unlike in most applications of gravitational lensing, where the bending angle is of the order of several arc seconds, very large bending angles are possible for light that closely approaches a black hole. Photons may even loop multiple times around a black hole before reaching the observer. There have been many proposals to use light's close approach to the black hole as a probe of the black hole metric. Of particular interest is the property of light lensed by the S stars orbiting in the galactic center. This paper will review some of the attempts made to study extreme lensing as well as extend the analysis of lensing by S stars. In particular, we are interested in the effect of a Reissner-Nordstrom like 1/r^2 term in the metric and how this would affect the properties of relativistic images.Comment: 13 pages, 9 figures. Submitted as invited review article for the GR19 issue of CQ

    Toward a Framework For Systematic Error Modeling Of Spaceborne Precipitation Radar With Noaa/Nssl Ground Radar Based National Mosaic Qpe

    Get PDF
    Characterization of the error associated with satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving spaceborne passive and active microwave measurements for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. The authors focus here on the error structure of NASA\u27s Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements using NOAA/NSSL ground radar based National Mosaic and QPE system (NMQ/Q2). A preliminary investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) using a 3-month data sample in the southern part of the United States. The primary contribution of this study is the presentation of the detailed steps required to derive a trustworthy reference rainfall dataset from Q2 at the PR pixel resolution. It relies on a bias correction and a radar quality index, both of which provide a basis to filter out the less trustworthy Q2 values. Several aspects of PR errors are revealed and quantified including sensitivity to the processing steps with the reference rainfall, comparisons of rainfall delectability and rainfall-rate distributions, spatial representativeness of error, and separation of systematic biases and random errors. The methodology and framework developed herein applies more generally to rainfall-rate estimates from other sensors on board low-earth-orbiting satellites such as microwave imagers and dual-wavelength radars such as with the Global Precipitation Measurement (GPM) mission

    Toward a Framework for Systematic Error Modeling of NASA Spaceborne Radar with NOAA/NSSL Ground Radar-Based National Mosaic QPE

    Get PDF
    Characterization of the error associated to satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving space-born passive and active microwave measurement") for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. We focus here on the error structure of NASA's Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements using NOAA/NSSL ground radar-based National Mosaic and QPE system (NMQ/Q2). A preliminary investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) using a three-month data sample in the southern part of US. The primary contribution of this study is the presentation of the detailed steps required to derive trustworthy reference rainfall dataset from Q2 at the PR pixel resolution. It relics on a bias correction and a radar quality index, both of which provide a basis to filter out the less trustworthy Q2 values. Several aspects of PR errors arc revealed and quantified including sensitivity to the processing steps with the reference rainfall, comparisons of rainfall detectability and rainfall rate distributions, spatial representativeness of error, and separation of systematic biases and random errors. The methodology and framework developed herein applies more generally to rainfall rate estimates from other sensors onboard low-earth orbiting satellites such as microwave imagers and dual-wavelength radars such as with the Global Precipitation Measurement (GPM) mission
    • …
    corecore