22,107 research outputs found
Embedded direct numerical simulation for aeronautical CFD
AbstractA method is proposed by which a direct numerical simulation of the compressible Navier-Stokes equations may be embedded within a more general aeronautical CFD code. The method may be applied to any code which solves the Euler equations or the Favre-averaged Navier-Stokes equations. A formal decomposition of the flowfield is used to derive modified equations for use with direct numerical simulation solvers. Some preliminary applications for model flows with transitional separation bubbles are given.</jats:p
Energy Efficient Relay-Assisted Cellular Network Model using Base Station Switching
Cellular network planning strategies have tended to focus on peak traffic scenarios rather than energy efficiency. By exploiting the dynamic nature of traffic load profiles, the prospect for greener communications in cellular access networks is evolving. For example, powering down base stations (BS) and applying cell zooming can significantly reduce energy consumption, with the overriding design priority still being to uphold a minimum quality of service (QoS). Switching off cells completely can lead to both coverage holes and performance degradation in terms of increased outage probability, greater transmit power dissipation in the up and downlinks, and complex interference management, even at low traffic loads. In this paper, a cellular network model is presented where certain BS rather than being turned off, are switched to low-powered relay stations (RS) during zero-to-medium traffic periods. Neighbouring BS still retain all the baseband signal processing and transmit signals to corresponding RS via backhaul connections, under the assumption that the RS covers the whole cell. Experimental results demonstrate the efficacy of this new BS-RS Switching technique from both an energy saving and QoS perspective, in the up and downlinks
The Relevant Operators for the Hubbard Hamiltonian with a magnetic field term
The Hubbard Hamiltonian and its variants/generalizations continue to dominate
the theoretical modelling of important problems such as high temperature
superconductivity. In this note we identify the set of relevant operators for
the Hubbard Hamiltonian with a magnetic field term.Comment: 19 pages, RevTe
SET based experiments for HTSC materials: II
The cuprates seem to exhibit statistics, dimensionality and phase transitions
in novel ways. The nature of excitations
[i.e. quasiparticle or collective], spin-charge separation, stripes [static
and dynamics], inhomogeneities, psuedogap, effect of impurity dopings [e.g. Zn,
Ni] and any other phenomenon in these materials must be consistently
understood. In this note we further discuss our original suggestion of using
Single Electron Tunneling Transistor
[SET] based experiments to understand the role of charge dynamics in these
systems. Assuming that SET operates as an efficient charge detection system we
can expect to understand the underlying physics of charge transport and charge
fluctuations in these materials for a range of doping. Experiments such as
these can be classed in a general sense as mesoscopic and nano characterization
of cuprates and related materials. In principle such experiments can show if
electron is fractionalized in cuprates as indicated by ARPES data. In contrast
to flux trapping experiments SET based experiments are more direct in providing
evidence about spin-charge separation. In addition a detailed picture of nano
charge dynamics in cuprates may be obtained.Comment: 10 pages revtex plus four figures; ICMAT 2001 Conference Symposium P:
P10-0
Coverage and Connectivity in Three-Dimensional Networks
Most wireless terrestrial networks are designed based on the assumption that
the nodes are deployed on a two-dimensional (2D) plane. However, this 2D
assumption is not valid in underwater, atmospheric, or space communications. In
fact, recent interest in underwater acoustic ad hoc and sensor networks hints
at the need to understand how to design networks in 3D. Unfortunately, the
design of 3D networks is surprisingly more difficult than the design of 2D
networks. For example, proofs of Kelvin's conjecture and Kepler's conjecture
required centuries of research to achieve breakthroughs, whereas their 2D
counterparts are trivial to solve. In this paper, we consider the coverage and
connectivity issues of 3D networks, where the goal is to find a node placement
strategy with 100% sensing coverage of a 3D space, while minimizing the number
of nodes required for surveillance. Our results indicate that the use of the
Voronoi tessellation of 3D space to create truncated octahedral cells results
in the best strategy. In this truncated octahedron placement strategy, the
transmission range must be at least 1.7889 times the sensing range in order to
maintain connectivity among nodes. If the transmission range is between 1.4142
and 1.7889 times the sensing range, then a hexagonal prism placement strategy
or a rhombic dodecahedron placement strategy should be used. Although the
required number of nodes in the hexagonal prism and the rhombic dodecahedron
placement strategies is the same, this number is 43.25% higher than the number
of nodes required by the truncated octahedron placement strategy. We verify by
simulation that our placement strategies indeed guarantee ubiquitous coverage.
We believe that our approach and our results presented in this paper could be
used for extending the processes of 2D network design to 3D networks.Comment: To appear in ACM Mobicom 200
- …