2,102 research outputs found
In-plane magnetic field-induced spin polarization and transition to insulating behavior in two-dimensional hole systems
Using a novel technique, we make quantitative measurements of the spin
polarization of dilute (3.4 to 6.8*10^{10} cm^{-2}) GaAs (311)A two-dimensional
holes as a function of an in-plane magnetic field. As the field is increased
the system gradually becomes spin polarized, with the degree of spin
polarization depending on the orientation of the field relative to the crystal
axes. Moreover, the behavior of the system turns from metallic to insulating
\textit{before} it is fully spin polarized. The minority-spin population at the
transition is ~8*10^{9} cm^{-2}, close to the density below which the system
makes a transition to an insulating state in the absence of a magnetic field.Comment: 4 pages with figure
CLEAR: Covariant LEAst-square Re-fitting with applications to image restoration
In this paper, we propose a new framework to remove parts of the systematic
errors affecting popular restoration algorithms, with a special focus for image
processing tasks. Generalizing ideas that emerged for regularization,
we develop an approach re-fitting the results of standard methods towards the
input data. Total variation regularizations and non-local means are special
cases of interest. We identify important covariant information that should be
preserved by the re-fitting method, and emphasize the importance of preserving
the Jacobian (w.r.t. the observed signal) of the original estimator. Then, we
provide an approach that has a "twicing" flavor and allows re-fitting the
restored signal by adding back a local affine transformation of the residual
term. We illustrate the benefits of our method on numerical simulations for
image restoration tasks
Resistance Spikes at Transitions between Quantum Hall Ferromagnets
We report a new manifestation of first-order magnetic transitions in
two-dimensional electron systems. This phenomenon occurs in aluminum arsenide
quantum wells with sufficiently low carrier densities and appears as a set of
hysteretic spikes in the resistance of a sample placed in crossed parallel and
perpendicular magnetic fields, each spike occurring at the transition between
states with different partial magnetizations. Our experiments thus indicate
that the presence of magnetic domains at the transition starkly increases
dissipation, an effect also suspected in other ferromagnetic materials.
Analysis of the positions of the transition spikes allows us to deduce the
change in exchange-correlation energy across the magnetic transition, which in
turn will help improve our understanding of metallic ferromagnetism.Comment: 6 pages, 3 figure
X-ray Variability Characteristics of the Seyfert 1 Galaxy NGC 3783
We have characterized the energy-dependent X-ray variability properties of
the Seyfert~1 galaxy NGC 3783 using archival XMM-Newton and Rossi X-ray Timing
Explorer data. The high-frequency fluctuation power spectral density function
(PSD) slope is consistent with flattening towards higher energies. Light curve
cross correlation functions yield no significant lags, but peak coefficients
generally decrease as energy separation of the bands increases on both short
and long timescales. We have measured the coherence between various X-ray bands
over the temporal frequency range of 6e-8 to 1e-4 Hz; this range includes the
temporal frequency of the low-frequency power spectral density function (PSD)
break tentatively detected by Markowitz et al. and includes the lowest temporal
frequency over which coherence has been measured in any AGN to date. Coherence
is generally near unity at these temporal frequencies, though it decreases
slightly as energy separation of the bands increases. Temporal
frequency-dependent phase lags are detected on short time scales; phase lags
are consistent with increasing as energy separation increases or as temporal
frequency decreases. All of these results are similar to those obtained
previously for several Seyfert galaxies and stellar-mass black hole systems.
Qualitatively, these results are consistent with the variability models of
Kotov et al. and Lyubarskii, wherein the X-ray variability is due to inwardly
propagating variations in the local mass accretion rate.Comment: Accepted for publication in The Astrophysical Journal, 2005, vol.
635, p. 180; version 2 has minor grammatical changes; 23 pages; uses
emulateapj
Aortic regurgitation in athletes: The challenges of echocardiographic interpretation
Background
Bicuspid aortic valve (BAV) is the most common congenital cardiac defect and prone to premature degeneration causing aortic regurgitation (AR). The assessment of AR in athletic individuals poses several challenges as the pathological left ventricle (LV) remodelling caused by AR may overlap with the physiological remodelling of intense exercise. The purpose of this study is to highlight these challenges, review the existing literature and discuss how to tackle these conundrums. As a real-world example, we compare the resting transthoracic echocardiographic (TTE) findings in a cohort of individuals with BAV and AR, sub-grouped into âhighly activeâ or âlightly activeâ.
Methods
Adult male subjects with an index TTE performed at a tertiary referral centre between 2019 and 2022 were included if the TTE confirmed a BAV and at least moderate AR. Further strict inclusion criteria were applied and parameters of valve disease severity was made in accordance with existing guidelines. Subjects completed a physical activity questionnaire over the telephone, and were classified into either group 1: âhighly activeâ or group 2: âlightly activeâ based on their answers. Demographics and TTE parameters were compared between the two groups.
Results
30 male subjects (mean age 44±13 years) with BAV-AR were included â 17 were highly active, and 13 lightly active. There was no significant difference in age (group 1, 45±12.7yrs vs group 2, 42±17yrs; p=0.49), height (p=0.45), weight (p=0.268) or severity of AR, when quantitative assessment was possible. Group 1 had a significantly higher stroke volume (131±17mls vs 102±13 mls; p=0.027), larger LV volumes, diastolic dimensions and significantly larger bi-atrial and right ventricular size. This LV dilatation in the context of AR and athleticism poses a diagnostic and management conundrum. Despite this, none of these 17 highly active individuals demonstrated any of the traditional criteria used to consider surgery.
Conclusion
There is significant overlap between the physiological adaptations to exercise and those caused by AR. Multi-modality imaging and stress testing can aid clinicians in diagnostic and management decisions in exercising individuals when there is discordance between AR severity and symptoms
Low-field magnetoresistance in GaAs 2D holes
We report low-field magnetotransport data in two-dimensional hole systems in
GaAs/AlGaAs heterostructures and quantum wells, in a large density range, cm, with primary focus on
samples grown on (311)A GaAs substrates. At high densities, cm, we observe a remarkably strong positive magnetoresistance.
It appears in samples with an anisotropic in-plane mobility and predominantly
along the low-mobility direction, and is strongly dependent on the
perpendicular electric field and the resulting spin-orbit interaction induced
spin-subband population difference. A careful examination of the data reveals
that the magnetoresistance must result from a combination of factors including
the presence of two spin-subbands, a corrugated quantum well interface which
leads to the mobility anisotropy, and possibly weak anti-localization. None of
these factors can alone account for the observed positive magnetoresistance. We
also present the evolution of the data with density: the magnitude of the
positive magnetoresistance decreases with decreasing density until, at the
lowest density studied ( cm), it vanishes and is
replaced by a weak negative magnetoresistance.Comment: 8 pages, 8 figure
The Effect of Spin Splitting on the Metallic Behavior of a Two-Dimensional System
Experiments on a constant-density two-dimensional hole system in a GaAs
quantum well reveal that the metallic behavior observed in the
zero-magnetic-field temperature dependence of the resistivity depends on the
symmetry of the confinement potential and the resulting spin-splitting of the
valence band
Anomalous Spin Polarization of GaAs Two-Dimensional Hole Systems
We report measurements and calculations of the spin-subband depopulation,
induced by a parallel magnetic field, of dilute GaAs two-dimensional (2D) hole
systems. The results reveal that the shape of the confining potential
dramatically affects the values of in-plane magnetic field at which the upper
spin subband is depopulated. Most surprisingly, unlike 2D electron systems, the
carrier-carrier interaction in 2D hole systems does not significantly enhance
the spin susceptibility. We interpret our findings using a multipole expansion
of the spin density matrix, and suggest that the suppression of the enhancement
is related to the holes' band structure and effective spin j=3/2.Comment: 6 pages, 4 figures, substantially extended discussion of result
- âŠ