4,304 research outputs found
Rayleigh scattering, mode coupling, and optical loss in silicon microdisks
High refractive index contrast optical microdisk resonators fabricated from
silicon-on-insulator wafers are studied using an external silica fiber taper
waveguide as a wafer-scale optical probe. Measurements performed in the 1500 nm
wavelength band show that these silicon microdisks can support
whispering-gallery modes with quality factors as high as 5.2 x 10^5, limited by
Rayleigh scattering from fabrication induced surface roughness. Microdisks with
radii as small as 2.5 microns are studied, with measured quality factors as
high as 4.7 x 10^5 for an optical mode volume of 5.3 cubic wavelengths in the
material.Comment: 4 pages, 2 figures; contains minor correction to doublet splitting
theor
Quantum Optics with Surface Plasmons
We describe a technique that enables strong, coherent coupling between
individual optical emitters and guided plasmon excitations in conducting
nano-structures at optical frequencies. We show that under realistic
conditions, optical emission can be almost entirely directed into the plasmon
modes. As an example, we describe an application of this technique involving
efficient generation of single photons on demand, in which the plasmon is
efficiently out-coupled to a dielectric waveguide.Comment: 11 pages, 3 figure
Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide
The optical coupling of guided modes in a GaP waveguide to nitrogen-vacancy
(NV) centers in diamond is demonstrated. The electric field penetration into
diamond and the loss of the guided mode are measured. The results indicate that
the GaP-diamond system could be useful for realizing coupled microcavity-NV
devices for quantum information processing in diamond.Comment: 4 pages 4 figure
Resonant enhancement of the zero-phonon emission from a color center in a diamond cavity
We demonstrate coupling of the zero-phonon line of individual
nitrogen-vacancy centers and the modes of microring resonators fabricated in
single-crystal diamond. A zero-phonon line enhancement exceeding ten-fold is
estimated from lifetime measurements at cryogenic temperatures. The devices are
fabricated using standard semiconductor techniques and off-the-shelf materials,
thus enabling integrated diamond photonics.Comment: 5 pages, 4 figure
Feasibility of detecting single atoms using photonic bandgap cavities
We propose an atom-cavity chip that combines laser cooling and trapping of
neutral atoms with magnetic microtraps and waveguides to deliver a cold atom to
the mode of a fiber taper coupled photonic bandgap (PBG) cavity. The
feasibility of this device for detecting single atoms is analyzed using both a
semi-classical treatment and an unconditional master equation approach.
Single-atom detection seems achievable in an initial experiment involving the
non-deterministic delivery of weakly trapped atoms into the mode of the PBG
cavity.Comment: 11 pages, 5 figure
Variability in H9N2 haemagglutinin receptor-binding preference and the pH of fusion
H9N2 avian influenza viruses are primarily a disease of poultry; however, they occasionally infect humans and are considered a potential pandemic threat. Little work has been performed to assess the intrinsic biochemical properties related to zoonotic potential of H9N2 viruses. The objective of this study, therefore, was to investigate H9N2 haemagglutinins (HAs) using two well-known correlates for human adaption: receptor-binding avidity and pH of fusion. Receptor binding was characterized using bio-layer interferometry to measure virus binding to human and avian-like receptor analogues and the pH of fusion was assayed by syncytium formation in virus-infected cells at different pHs. We characterized contemporary H9N2 viruses of the zoonotic G1 lineage, as well as representative viruses of the zoonotic BJ94 lineage. We found that most contemporary H9N2 viruses show a preference for sulphated avian-like receptor analogues. However, the ‘Eastern’ G1 H9N2 viruses displayed a consistent preference in binding to a human-like receptor analogue. We demonstrate that the presence of leucine at position 226 of the HA receptor-binding site correlated poorly with the ability to bind a human-like sialic acid receptor. H9N2 HAs also display variability in their pH of fusion, ranging between pH 5.4 and 5.85 which is similar to that of the first wave of human H1N1pdm09 viruses but lower than the pH of fusion seen in zoonotic H5N1 and H7N9 viruses. Our results suggest possible molecular mechanisms that may underlie the relatively high prevalence of human zoonotic infection by particular H9N2 virus lineages
- …