49 research outputs found

    Direct Infection and Replication of Naturally Occurring Hepatitis C Virus Genotypes 1, 2, 3 and 4 in Normal Human Hepatocyte Cultures

    Get PDF
    Hepatitis C virus (HCV) infection afflicts about 170 million individuals worldwide. However, the HCV life cycle is only partially understood because it has not been possible to infect normal human hepatocytes in culture. The current Huh-7 systems use cloned, synthetic HCV RNA expressed in hepatocellular carcinoma cells to produce virions, but these cells cannot be infected with naturally occurring HCV obtained from infected patients.Here, we describe a human hepatocyte culture permissible to the direct infection with naturally occurring HCV genotypes 1, 2, 3 and 4 in the blood of HCV-infected patients. The culture system mimics the biology and kinetics of HCV infection in humans, and produces infectious virions that can infect naïve human hepatocytes.This culture system should complement the existing systems, and may facilitate the understanding of the HCV life cycle, its effects in the natural host cell, the hepatocyte, as well as the development of novel therapeutics and vaccines

    High Distribution of CD40 and TRAF2 in Th40 T Cell Rafts Leads to Preferential Survival of this Auto-Aggressive Population in Autoimmunity

    Get PDF
    CD40-CD154 interactions have proven critical in autoimmunity, with the identification of CD4(lo)CD40(+) T cells (Th40 cells) as harboring an autoaggressive T cell population shedding new insights into those disease processes. Th40 cells are present at contained levels in non-autoimmune individuals but are significantly expanded in autoimmunity. Th40 cells are necessary and sufficient in transferring type 1 diabetes in mouse models. However, little is known about CD40 signaling in T cells and whether there are differences in that signaling and subsequent outcome depending on disease conditions. When CD40 is engaged, CD40 and TNF-receptor associated factors, TRAFs, become associated with lipid raft microdomains. Dysregulation of T cell homeostasis is emerging as a major contributor to autoimmune disease and thwarted apoptosis is key in breaking homeostasis.Cells were sorted into CD4(hi) and CD4(lo) (Th40 cells) then treated and assayed either as whole or fractionated cell lysates. Protein expression was assayed by western blot and Nf-kappaB DNA-binding activity by electrophoretic mobility shifts. We demonstrate here that autoimmune NOD Th40 cells have drastically exaggerated expression of CD40 on a per-cell-basis compared to non-autoimmune BALB/c. Immediately ex-vivo, untreated Th40 cells from NOD mice have high levels of CD40 and TRAF2 associated with the raft microdomain while Th40 cells from NOR and BALB/c mice do not. CD40 engagement of Th40 cells induces Nf-kappaB DNA-binding activity and anti-apoptotic Bcl-X(L) expression in all three mouse strains. However, only in NOD Th40 cells is anti-apoptotic cFLIP(p43) induced which leads to preferential survival and proliferation. Importantly, CD40 engagement rescues NOD Th40 cells from Fas-induced death.CD40 may act as a switch between life and death promoting signals and NOD Th40 cells are poised for survival via this switch. This may explain how they expand in autoimmunity to thwart T cell homeostasis

    RNAi-Mediated c-Rel Silencing Leads to Apoptosis of B Cell Tumor Cells and Suppresses Antigenic Immune Response In Vivo

    Get PDF
    c-Rel is a member of the Rel/NF-κB transcription factor family and is predominantly expressed in lymphoid and myeloid cells, playing a critical role in lymphocyte proliferation and survival. Persistent activation of the c-Rel signal transduction pathway is associated with allergies, inflammation, autoimmune diseases, and a variety of human malignancies. To explore the potential of targeting c-Rel as a therapeutic agent for these disorders, we designed a small interfering RNA (siRNA) to silence c-Rel expression in vitro and in vivo. C-Rel-siRNA expression via a retroviral vector in a B cell tumor cell line leads to growth arrest and apoptosis of the tumor cells. Silencing c-Rel in primary B cells in vitro compromises their proliferative and survival response to CD40 activation signals, similar to the impaired response of c-Rel knockout B cells. Most important, in vivo silencing of c-Rel results in significant impairment in T cell-mediated immune responses to antigenic stimulation. Our study thus validates the efficacy of c-Rel-siRNA, and suggests the development of siRNA-based therapy, as well as small molecular inhibitors for the treatment of B cell tumors as well as autoimmune diseases

    Bcl-2-regulated cell death signalling in the prevention of autoimmunity

    Get PDF
    Cell death mediated through the intrinsic, Bcl-2-regulated mitochondrial apoptosis signalling pathway is critical for lymphocyte development and the establishment of central and maintenance of peripheral tolerance. Defects in Bcl-2-regulated cell death signalling have been reported to cause or correlate with autoimmunity in mice and men. This review focuses on the role of Bcl-2 family proteins implicated in the development of autoimmune disorders and their potential as targets for therapeutic intervention

    Partial interferon-γ receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guerin infection and a sibling with clinical tuberculosis

    No full text
    Complete interferon-γ receptor 1 (IFNγR1) deficiency has been identified previously as a cause of fatal bacillus Calmette-Guerin (BCG) infection with lepromatoid granulomas, and of disseminated nontuberculous mycobacterial (NTM) infection in children who had not been inoculated with BCG. We report here a kindred with partial IFNγR1 deficiency: one child afflicted by disseminated BCG infection with tuberculoid granulomas, and a sibling, who had not been inoculated previously with BCG, with clinical tuberculosis. Both responded to antimicrobials and are currently well without prophylactic therapy. Impaired response to IFN-γ was documented in B cells by signal transducer and activator of transcription 1 nuclear translocation, in fibroblasts by cell surface HLA class II induction, and in monocytes by cell surface CD64 induction and TNF-α secretion. Whereas cells from healthy children responded to even low IFN-γ concentrations (10 IU/ml), and cells from a child with complete IFNγR1 deficiency did not respond to even high IFN-γ concentrations (10,000 IU/ml), cells from the two siblings did not respond to low or intermediate concentrations, yet responded to high IFN-γ concentrations. A homozygous missense IFNgR1 mutation was identified, and its pathogenic role was ascertained by molecular complementation. Thus, whereas complete IFNγR1 deficiency in previously identified kindreds caused fatal lepromatoid BCG infection and disseminated NTM infection, partial IFNγR1 deficiency in this kindred caused curable tuberculoid BCG infection and clinical tuberculosis
    corecore