60 research outputs found

    Increased occurrence of protein kinase CK2 in astrocytes in Alzheimer’s disease pathology

    Get PDF
    Background Alzheimer’s disease (AD) is the most common neurodegenerative disease. In addition to the occurrence of amyloid deposits and widespread tau pathology, AD is associated with a neuroinflammatory response characterized by the activation of microglia and astrocytes. Protein kinase 2 (CK2, former casein kinase II) is involved in a wide variety of cellular processes. Previous studies on CK2 in AD showed controversial results, and the involvement of CK2 in neuroinflammation in AD remains elusive. Methods In this study, we used immunohistochemical and immunofluorescent staining methods to investigate the localization of CK2 in the hippocampus and temporal cortex of patients with AD and non-demented controls. We compared protein levels with Western blotting analysis, and we investigated CK2 activity in human U373 astrocytoma cells and human primary adult astrocytes stimulated with IL-1β or TNF-α. Results We report increased levels of CK2 in the hippocampus and temporal cortex of AD patients compared to non-demented controls. Immunohistochemical analysis shows CK2 immunoreactivity in astrocytes in AD and control cases. In AD, the presence of CK2 immunoreactive astrocytes is increased. CK2 immunopositive astrocytes are associated with amyloid deposits, suggesting an involvement of CK2 in the neuroinflammatory response. In U373 cells and human primary astrocytes, the selective CK2 inhibitor CX-4945 shows a dose-dependent reduction of the IL-1β or TNF-α induced MCP-1 and IL-6 secretion. Conclusions This data suggests that CK2 in astrocytes is involved in the neuroinflammatory response in AD. The reduction in pro-inflammatory cytokine secretion by human astrocytes using the selective CK2 inhibitor CX-4945 indicates that CK2 could be a potential target to modulate neuroinflammation in AD

    Purifcation of the Gp31 co-chaperonin from bacteriophage T4

    No full text

    Determination of chaperonin activity in vivo

    No full text

    Determination of chaperonin activity in vivo

    No full text

    Time-resolved fluorescence of the bacteriophage T4 capsid protein gp23

    No full text
    The time-resolved fluorescence properties of the bacteriophage T4 capsid protein gp23 are investigated. The structural characteristics of this protein are largely unknown and can be probed by recording time-resolved and decay-associated fluorescence spectra and intensity decay curves using a 200 ps-gated intensified CCD-camera. Spectral and decay data are recorded simultaneously, which makes data acquisition fast compared to time-correlated single-photon counting. A red-shift of the emission maximum within the first nanosecond of decay is observed, which can be explained by the different decay-associated spectra of fluorescence lifetimes of the protein in combination with dipolar relaxation. In addition, iodide quenching experiments are performed, to study the degree of exposure of the various tryptophan residues. A model for the origin of the observed lifetimes of 0.032 0.06, 2.1 ± 0.1 and 6.8 ± 0.8 ns is presented: the 32 ps lifetime can be assigned to the emission of a buried tryptophan residue, the 0.4 and 2.1 ns lifetimes to two partly buried residues, and the 6.8 ns lifetime to a single tryptophan outside the bulk of the folded gp23. © 2004 Elsevier B.V. All rights reserved

    Tandem mass spectrometry of intact GroEL-substrate complexes reveals substrate-specific conformational changes in the trans ring.

    No full text
    It has been suggested that the bacterial GroEL chaperonin accommodates only one substrate at any given time, due to conformational changes to both the cis and trans ring that are induced upon substrate binding. Using electrospray ionization mass spectrometry, we show that indeed GroEL binds only one molecule of the model substrate Rubisco. In contrast, the capsid protein of bacteriophage T4, a natural GroEL substrate, can occupy both rings simultaneously. As these substrates are of similar size, the data indicate that each substrate induces distinct conformational changes in the GroEL chaperonin. The distinctive binding behavior of Rubisco and the capsid protein was further investigated using tandem mass spectrometry on the intact 800-914 kDa GroEL-substrate complexes. Our data suggest that even in the gas phase the substrates remain bound inside the GroEL cavity. The analysis revealed further that binding of Rubisco to the GroEL oligomer stabilizes the chaperonin complex significantly, whereas binding of one capsid protein did not have the same effect. However, addition of a second capsid protein molecule to GroEL resulted in a similar stabilizing effect to that obtained after the binding of a single Rubisco. On the basis of the stoichiometry of the GroEL chaperonin-substrate complex and the dissociation behavior of the two different substrates, we hypothesize that the binding of a single capsid polypeptide does not induce significant conformational changes in the GroEL trans ring, and hence the unoccupied GroEL ring remains accessible for a second capsid molecule
    • …
    corecore