5,038 research outputs found

    Perturbative calculation of quasi-normal modes of Schwarzschild black holes

    Get PDF
    We discuss a systematic method of analytically calculating the asymptotic form of quasi-normal frequencies of a four-dimensional Schwarzschild black hole by expanding around the zeroth-order approximation to the wave equation proposed by Motl and Neitzke. We obtain an explicit expression for the first-order correction and arbitrary spin. Our results are in agreement with the results from WKB and numerical analyses in the case of gravitational waves.Comment: 11 pages; references added and a sign error corrected; to appear in CQ

    Symmetry of massive Rarita-Schwinger fields

    Full text link
    We derive the general lagrangian and propagator for a vector-spinor field in dd-dimensions and show that the physical observables are invariant under the so-called point transformation symmetry. Until now the symmetry has not been exploited in any non-trival way, presumably because it is not an invariance of the classical action nor is it a gauge symmetry. Nevertheless, we develop a technique for exploring the consequences of the symmetry leading to a conserved vector current and charge. The current and charge are identically zero in the free field case and only contribute in a background such as a electromagnetic or gravitational field. The current can couple spin-3/2 fields to vector and scalar fields and may have important consequences in intermediate energy hadron physics as well as linearized supergravity. The consistency problem which plagues higher spin field theories is then discussed and and some ideas regarding the possiblity of solutions are presented.Comment: 26 pages, 1 figure; revised using referee comments, Journal ref. adde

    Improved algorithms for machine allocation in manufacturing systems

    Get PDF
    In this paper we present two algorithms for a machine allocation problem occurring in manufacturing systems. For thetwo algorithms presented we prove worst-case performance ratios of 2 and 312, respectively. The machlne allocat~onproblem we consider is a general convex resource allocation problem, which makes the algorithms applicable to a varletyof resource allocation problems. Numerical results are presented for two real-life manufacturing systems.networks;manufacturing;allocation of machines;performance/productivity;queues

    The relationship between quality of attachment in infancy and IQ in Kindergarten

    Get PDF
    Wetensch. publicatieFaculteit der Sociale Wetenschappe

    Climate change impact on the leaching of a heavy metal contamination in a small lowland catchment

    Get PDF
    The objective of this study was to assess the potential effects of climate change on the transport of pre-existing spatially-extensive trace metal contamination to a small lowland catchment in the south of the Netherlands. The area surrounding the Keersop has been contaminated with heavy metals by the atmospheric emissions of four zinc ore smelters. This heavy metal contamination, e.g. with Cd and Zn, has accumulated in the topsoil and leaches towards surface water system, especially during high groundwater levels and high discharge rates. Simulated projections of future climate predict increased precipitation in winter, less precipitation in summer, and higher air temperatures throughout the year. These climate change scenarios projected lower groundwater levels and lower discharge rates. As a result of lower groundwater levels, transport of Cd and Zn towards surface water is also projected to decrease in the future climate. These results indicate a positive effect of climate change on a limited aspect of surface water quality

    Cosmic-ray energy spectrum and composition up to the ankle - the case for a second Galactic component

    Get PDF
    We have carried out a detailed study to understand the observed energy spectrum and composition of cosmic rays with energies up to ~10^18 eV. Our study shows that a single Galactic component with subsequent energy cut-offs in the individual spectra of different elements, optimised to explain the observed spectra below ~10^14 eV and the knee in the all-particle spectrum, cannot explain the observed all-particle spectrum above ~2x10^16 eV. We discuss two approaches for a second component of Galactic cosmic rays -- re-acceleration at a Galactic wind termination shock, and supernova explosions of Wolf-Rayet stars, and show that the latter scenario can explain almost all observed features in the all-particle spectrum and the composition up to ~10^18 eV, when combined with a canonical extra-galactic spectrum expected from strong radio galaxies or a source population with similar cosmological evolution. In this two-component Galactic model, the knee at ~ 3x10^15 eV and the second knee at ~10^17 eV in the all-particle spectrum are due to the cut-offs in the first and second components, respectively. We also discuss several variations of the extra-galactic component, from a minimal contribution to scenarios with a significant component below the ankle (at ~4x10^18 eV), and find that extra-galactic contributions in excess of regular source evolution are neither indicated nor in conflict with the existing data. Our main result is that the second Galactic component predicts a composition of Galactic cosmic rays at and above the second knee that largely consists of helium or a mixture of helium and CNO nuclei, with a weak or essentially vanishing iron fraction, in contrast to most common assumptions. This prediction is in agreement with new measurements from LOFAR and the Pierre Auger Observatory which indicate a strong light component and a rather low iron fraction between ~10^17 and 10^18 eV.Comment: Added Table 4; Published in A&A, 595 (2016) A33 (Highlight paper

    Water constraints on European power supply under climate change: Impacts on electricity prices

    Get PDF
    Recent warm, dry summers showed the vulnerability of the European power sector to low water availability and high river temperatures. Climate change is likely to impact electricity supply, in terms of both water availabilty for hydropower generation and cooling water usage for thermoelectric power production. Here, we show the impacts of climate change and changes in water availability and water temperature on European electricity production and prices. Using simulations of daily river flows and water temperatures under future climate (2031-2060) in power production models, we show declines in both thermoelectric and hydropower generating potential for most parts of Europe, except for the most northern countries. Based on changes in power production potentials, we assess the cost-optimal use of power plants for each European country by taking electricity import and export constraints into account. Higher wholesale prices are projected on a mean annual basis for most European countries (except for Sweden and Norway), with strongest increases for Slovenia (12-15%), Bulgaria (21-23%) and Romania (31-32% for 2031-2060), where limitations in water availability mainly affect power plants with low production costs. Considering the long design life of power plant infrastructures, short-term adaptation strategies are highly recommended to prevent undesired distributional and allocative effects

    Global thermal pollution of rivers from thermoelectric power plants

    Get PDF
    Worldwide riverine thermal pollution patterns were investigated by combining mean annual heat rejection rates from power plants with once-through cooling systems with the global hydrological-water temperature model variable infiltration capacity (VIC)-RBM. The model simulates both streamflow and water temperature on 0.5° ×0.5° spatial resolution worldwide and by capturing their effect, identifies multiple thermal pollution hotspots. The Mississippi receives the highest total amount of heat emissions (62% and 28% of which come from coal-fuelled and nuclear power plants, respectively) and presents the highest number of instances where the commonly set 3 °C temperature increase limit is equalled or exceeded. The Rhine receives 20% of the thermal emissions compared to the Mississippi (predominantly due to nuclear power plants), but is the thermally most polluted basin in relation to the total flow per watershed, with one third of its total flow experiencing a temperature increase ≥5 °C on average over the year. In other smaller basins in Europe, such as the Weser and the Po, the share of the total streamflow with a temperature increase ≥3 °C goes up to 49% and 81%, respectively, during July-September. As the first global analysis of its kind, this work points towards areas of high riverine thermal pollution, where temporally finer thermal emission data could be coupled with a spatially finer model to better investigate water temperature increase and its effect on aquatic ecosystems
    corecore