1,362 research outputs found

    Theory of Spin polarized Tunneling in Superconducting Sr2RuO4

    Full text link
    A theory of tunneling conductance in ferromagnetic metal/insulator/triplet - supercondcutor junctions is presented for unitary and non-unitary spin triplet pairing states which are promising candidates for the superconducting paring symmetry of Sr2RuO4. As the magnitude of the exchange interaction in the ferromagnetic metal is increased, the conductance for the unitary pairing state below the energy gap is reduced in contrast to the case for the non-unitary pairing state

    Electronic Properties of Topological Materials: Optical Excitations in Moebius Conjugated Polymers

    Full text link
    Electronic structures and optical excitations in Moebius conjugated polymers are studied theoretically. Periodic and Moebius boundary conditions are applied to the tight binding model of poly(para-phenylene), taking exciton effects into account. We discuss that oligomers with a few structural units are more effective than polymers for observations of effects of discrete wave numbers that are shifted by the change in boundary condition. Next, calculations of optical absorption spectra are reported. Certain components of optical absorption for an electric field perpendicular to the polymer axis mix with absorption spectra for an electric field parallel to the polymer axis. Therefore, the polarization dependences of an electric field of light enable us to detect whether conjugated polymers have the Moebius boundary.Comment: 10 pages, 6 figures, to be published in J. Phys. Soc. Jpn., Vol. 74 No. 2 (February, 2005), Letter sectio

    CHROMOSOMES OF CHICKEN-PHEASANT HYBRIDS

    Get PDF

    Ferromagnetic features on zero-bias conductance peaks in ferromagnet/insulator/superconductor junction

    Full text link
    We present a formula for tunneling conductance in ballistic ferromagnet/ferromagnetic insulator/superconductor junctions where the superconducting state has opposite spin pairing symmetry. The formula can involve correctly a ferromagnetism has been induced by effective mass difference between up- and down-spin electrons. Then, this effective mass mismatch ferromagnet and standard Stoner ferromagnet have been employed in this paper. As an application of the formulation, we have studied the tunneling effect for junctions including spin-triplet p-wave superconductor. The conductace spectra show a clear difference between two ferromagnets depending upon the way of normalization of the conductance. Especially, a essential difference is seen in zero-bias conductance peaks reflecting characteristics of each ferromagnets. From obtained results, it will be suggested that the measurements of the tunneling conductance in the junction provide us a useful information about the mechanism of itinerant ferromagnetism in metal.Comment: 8 pages, 8 figures, references added to the first versio

    Theory of magnetotunneling spectroscopy in spin triplet p-wave superconductors

    Full text link
    We study the influence of a magnetic field HH on the zero-bias conductance peak (ZBCP) due to zero-energy Andreev bound state (ZES) in normal metal / unconventional superconductor. For p-wave junctions, ZBCP does not split into two by HH even for sufficiently low transparent junctions, where ZBCP clearly splits for d-wave. This unique property originates from the fact that for p-wave superconductors, perpendicularly injected quasiparticle form ZES, which contribute most dominantly on the tunneling conductance. In addition, we show that for pxp_{x}+ipyp_{y}-wave superconductor junctions, the height of ZBCP is sensitive to HH due to the formation of broken time reversal symmetry state. We propose that tunneling spectroscopy in the presence of magnetic field, i.e.i.e., magnetotunnelingmagnetotunneling, is an promising method to determine the pairing symmetry of unconventional superconductors.Comment: 4 pages, 6 figures, using jpsj2.cl

    VEGF(164)-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization

    Get PDF
    Hypoxia-induced VEGF governs both physiological retinal vascular development and pathological retinal neovascularization. In the current paper, the mechanisms of physiological and pathological neovascularization are compared and contrasted. During pathological neovascularization, both the absolute and relative expression levels for VEGF(164) increased to a greater degree than during physiological neovascularization. Furthermore, extensive leukocyte adhesion was observed at the leading edge of pathological, but not physiological, neovascularization. When a VEGF(164)-specific neutralizing aptamer was administered, it potently suppressed the leukocyte adhesion and pathological neovascularization, whereas it had little or no effect on physiological neovascularization. In parallel experiments, genetically altered VEGF(164)-deficient (VEGF(120/188)) mice exhibited no difference in physiological neovascularization when compared with wild-type (VEGF(+/+)) controls. In contrast, administration of a VEGFk-1/Fc fusion protein, which blocks all VEGF isoforms, led to significant suppression of both pathological and physiological neovascularization. In addition, the targeted inactivation of monocyte lineage cells with clodronate-liposomes led to the suppression of pathological neovascularization. Conversely, the blockade of T lymphocyte-mediated immune responses with an anti-CD2 antibody exacerbated pathological neovascularization. These data highlight important molecular and cellular differences between physiological and pathological retinal neovascularization. During pathological neovascularization, VEGF(164) selectively induces inflammation and cellular immunity. These processes provide positive and negative angiogenic regulation, respectively. Together, new therapeutic approaches for selectively targeting pathological, but not physiological, retinal neovascularization are outlined

    Tunneling current in triplet f-wave superconductors with horizontal lines of nodes

    Full text link
    We calculate the tunneling conductance spectra of a normal-metal/insulator/triplet superconductor using the Blonder-Tinkham-Klapwijk (BTK) formulation. Possible states for the superconductor are considered with horizontal lines of nodes, breaking the time reversal symmetry. These results would be useful to discriminate between pairing states in superonductor Sr2_2RuO4_4 and also in UPt3_3.Comment: 12 pages, 7 figure

    Theory of tunneling spectroscopy in superconducting Sr2RuO4

    Full text link
    A theory for tunneling spectroscopy in normal metal /insulator/triplet superconductor junction is presented. We assume two kinds of non-unitary triplet superconducting states which are the most promising states for Sr2_{2}RuO4_{4}. The calculated conductance spectra showzero-bias peaks as well as gap structures. The existences of residual components in the spectra reflect the non-unitary properties of superconducting states.Comment: 5pages, 4figures(included), to be published in Phys.Rev.B 56, (1997
    • …
    corecore