189 research outputs found

    Smart Metering System for Microgrids

    Get PDF

    The emission positions of kHz QPOs and Kerr spacetime influence

    Full text link
    Based the Alfven wave oscillation model (AWOM) and relativistic precession model (RPM) for twin kHz QPOs, we estimate the emission positions of most detected kHz QPOs to be at r=18+-3 km (R/15km) except Cir X-1 at r = 30\+-5 km (R/15km). For the proposed Keplerian frequency as an upper limit to kHz QPO, the spin effects in Kerr Spacetime are discussed, which have about a 5% (2%) modification for that of the Schwarzchild case for the spin frequency of 1000 (400) Hz.The application to the four typical QPO sources, Cir X-1, Sco X-1, SAX J1808.4-3658 and XTE 1807-294, is mentioned.Comment: Science China, Physics, Mechanics & Astronomy, 2010, 53, NO.

    Uptake of oxLDL and IL-10 production by macrophages requires PAFR and CD36 recruitment into the same lipid rafts

    Get PDF
    Macrophage interaction with oxidized low-density lipoprotein (oxLDL) leads to its differentiation into foam cells and cytokine production, contributing to atherosclerosis development. In a previous study, we showed that CD36 and the receptor for platelet-activating factor (PAFR) are required for oxLDL to activate gene transcription for cytokines and CD36. Here, we investigated the localization and physical interaction of CD36 and PAFR in macrophages stimulated with oxLDL. We found that blocking CD36 or PAFR decreases oxLDL uptake and IL-10 production. OxLDL induces IL-10 mRNA expression only in HEK293T expressing both receptors (PAFR and CD36). OxLDL does not induce IL-12 production. The lipid rafts disruption by treatment with βCD reduces the oxLDL uptake and IL-10 production. OxLDL induces co-immunoprecipitation of PAFR and CD36 with the constitutive raft protein flotillin-1, and colocalization with the lipid raft-marker GM1-ganglioside. Finally, we found colocalization of PAFR and CD36 in macrophages from human atherosclerotic plaques. Our results show that oxLDL induces the recruitment of PAFR and CD36 into the same lipid rafts, which is important for oxLDL uptake and IL-10 production. This study provided new insights into how oxLDL interact with macrophages and contributing to atherosclerosis development

    Chronic Arsenic Exposure and Oxidative Stress: OGG1 Expression and Arsenic Exposure, Nail Selenium, and Skin Hyperkeratosis in Inner Mongolia

    Get PDF
    Arsenic, a human carcinogen, is known to induce oxidative damage to DNA. In this study we investigated oxidative stress and As exposure by determining gene expression of OGG1, which codes for an enzyme, 8-oxoguanine DNA glycosylase, involved in removing 8-oxoguanine in As-exposed individuals. Bayingnormen (Ba Men) residents in Inner Mongolia are chronically exposed to As via drinking water. Water, toenail, and blood samples were collected from 299 Ba Men residents exposed to 0.34–826 μg/L As. RNA was isolated from blood, and mRNA levels of OGG1 were determined using real-time polymerase chain reaction. OGG1 expression levels were linked to As concentrations in drinking water and nails, selenium concentrations in nails, and skin hyperkeratosis. OGG1 expression was strongly associated with water As concentrations (p < 0.0001). Addition of the quadratic term significantly improved the fit compared with the linear model (p = 0.05). The maximal OGG1 response was at the water As concentration of 149 μg/L. OGG1 expression was also significantly associated with toenail As concentrations (p = 0.015) but inversely associated with nail Se concentrations (p = 0.0095). We found no significant differences in the As-induced OGG1 expression due to sex, smoking, or age even though the oldest group showed the strongest OGG1 response (p = 0.0001). OGG1 expression showed a dose-dependent increased risk of skin hyperkeratosis in males (trend analysis, p = 0.02), but the trend was not statistically significant in females. The results from this study provide a linkage between oxidative stress and As exposure in humans. OGG1 expression may be useful as a biomarker for assessing oxidative stress from As exposure

    Human and Murine Very Small Embryonic-Like Cells Represent Multipotent Tissue Progenitors, In Vitro and In Vivo

    Full text link
    The purpose of this study was to determine the lineage progression of human and murine very small embryonic-like (HuVSEL or MuVSEL) cells in vitro and in vivo. In vitro, HuVSEL and MuVSEL cells differentiated into cells of all three embryonic germ layers. HuVSEL cells produced robust mineralized tissue of human origin compared with controls in calvarial defects. Immunohistochemistry demonstrated that the HuVSEL cells gave rise to neurons, adipocytes, chondrocytes, and osteoblasts within the calvarial defects. MuVSEL cells were also able to differentiate into similar lineages. First round serial transplants of MuVSEL cells into irradiated osseous sites demonstrated that ?60% of the cells maintained their VSEL cell phenotype while other cells differentiated into multiple tissues at 3 months. Secondary transplants did not identify donor VSEL cells, suggesting limited self renewal but did demonstrate VSEL cell derivatives in situ for up to 1 year. At no point were teratomas identified. These studies show that VSEL cells produce multiple cellular structures in vivo and in vitro and lay the foundation for future cell-based regenerative therapies for osseous, neural, and connective tissue disorders. Key Points HuVSEL and MuVSEL cells are capable of differentiating into multiple germline derivatives in vitro and in vivo. MuVSEL cells have limited capacity for self-renewal and neither HuVSEL nor MuVSEL cells formed tumors in immunodeficient animals.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140202/1/scd.2013.0362.pd

    Human Very Small Embryonic-Like Cells Generate Skeletal Structures, In Vivo

    Full text link
    Human very small embryonic-like (hVSEL) cells are a resident population of multipotent stem cells in the bone marrow involved in the turnover and regeneration of tissues. The levels of VSEL cells in blood are greatly increased in response to injury, and they have been shown to repair injured tissues. Adult hVSEL cells, SSEA-4+/CD133+/CXCR4+/Lin?/CD45?, express the pluripotency markers (Oct-4 and Nanog) and may be able to differentiate into cells from all 3 germ lineages. hVSEL cells isolated from blood by apheresis following granulocyte?colony-stimulating factor mobilization were fractionated and enriched by elutriation and fluorescence activated cell sorting. Collagen sponge scaffolds containing 2,000?30,000 hVSEL cells were implanted into cranial defects generated in SCID mice. Analysis by microcomputed tomography showed that a cell population containing VSEL cells produced mineralized tissue within the cranial defects compared with controls at 3 months. Histologic studies showed significant bone formation and cellular organization within the defects compared with cellular or scaffold controls alone. Antibodies to human leukocyte antigens demonstrated that the newly generated tissues were of human origin. Moreover, human osteocalcin was identified circulating in the peripheral blood. There was evidence that some level of hVSEL cells migrated away from the defect site, using quantitative real-time polymerase chain reaction to detect for human-specific Alu sequences. This study demonstrates that hVSEL cells are able to generate human bone tissue in a mouse model of skeletal repair. These studies lay the foundation for future cell-based regenerative therapies for osseous and connective tissue disorders, including trauma and degenerative conditions, such as osteoporosis, fracture repair, and neoplastic repair.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140198/1/scd.2012.0327.pd
    corecore