265 research outputs found

    Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm1^{-1} from a metallic spintronic emitter

    Get PDF
    To explore the capabilities of metallic spintronic thin-film stacks as a source of intense and broadband terahertz electromagnetic fields, we excite a W/CoFeB/Pt trilayer on a large-area glass substrate (diameter of 7.5 cm) by a femtosecond laser pulse (energy 5.5 mJ, duration 40 fs, wavelength 800 nm). After focusing, the emitted terahertz pulse is measured to have a duration of 230 fs, a peak field of 300 kV cm1^{-1} and an energy of 5 nJ. In particular, the waveform exhibits a gapless spectrum extending from 1 to 10 THz at 10% of amplitude maximum, thereby facilitating nonlinear control over matter in this difficult-to-reach frequency range and on the sub-picosecond time scale.Comment: 7 pages, 4 figure

    Efficient Auger scattering in Landau-quantized graphene

    Get PDF
    We present an analytical expression for the differential transmission of a delta-shaped light field in Landauquantized graphene. This enables a direct comparison of experimental spectra to theoretical calculations reflecting the carrier dynamics including all relevant scattering channels. In particular, the relation is used to provide evidence for strong Auger scattering in Landau-quantized graphene

    Doubly dressed bosons - exciton-polaritons in a strong terahertz field

    Full text link
    We demonstrate the existence of a novel quasiparticle: an exciton in a semiconductor doubly dressed with two photons of different wavelengths: near infrared cavity photon and terahertz (THz) photon, with the THz coupling strength approaching the ultra-strong coupling regime. This quasiparticle is composed of three different bosons, being a mixture of a matter-light quasiparticle. Our observations are confirmed by a detailed theoretical analysis, treating quantum mechanically all three bosonic fields. The doubly dressed quasiparticles retain the bosonic nature of their constituents, but their internal quantum structure strongly depends on the intensity of the applied terahertz field.Comment: 12 pages, 9 figure

    Observation of Coulomb-Assisted Dipole-Forbidden Intraexciton Transitions in Semiconductors

    Get PDF
    We use terahertz pulses to induce resonant transitions between the eigenstates of optically generated exciton populations in a high-quality semiconductor quantum-well sample. Monitoring the excitonic photoluminescence, we observe transient quenching of the 1s1s exciton emission, which we attribute to the terahertz-induced 1s1s-to-2p2p excitation. Simultaneously, a pronounced enhancement of the 2s2s-exciton emission is observed, despite the 1s1s-to-2s2s transition being dipole forbidden. A microscopic many-body theory explains the experimental observations as a Coulomb-scattering mixing of the 2ss and 2pp states, yielding an effective terahertz transition between the 1ss and 2ss populations.Comment: 5 pages, 3 figure

    Slow Noncollinear Coulomb Scattering in the Vicinity of the Dirac Point in Graphene

    Get PDF
    The Coulomb scattering dynamics in graphene in energetic proximity to the Dirac point is investigated by polarization resolved pump-probe spectroscopy and microscopic theory. Collinear Coulomb scattering rapidly thermalizes the carrier distribution in k directions pointing radially away from the Dirac point. Our study reveals, however, that, in almost intrinsic graphene, full thermalization in all directions relying on noncollinear scattering is much slower. For low photon energies, carrier-optical-phonon processes are strongly suppressed and Coulomb mediated noncollinear scattering is remarkably slow, namely on a ps time scale. This effect is very promising for infrared and THz devices based on hot carrier effects

    Photocurrent measurements of supercollision cooling in graphene

    Full text link
    The cooling of hot electrons in graphene is the critical process underlying the operation of exciting new graphene-based optoelectronic and plasmonic devices, but the nature of this cooling is controversial. We extract the hot electron cooling rate near the Fermi level by using graphene as novel photothermal thermometer that measures the electron temperature (T(t)T(t)) as it cools dynamically. We find the photocurrent generated from graphene pnp-n junctions is well described by the energy dissipation rate CdT/dt=A(T3Tl3)C dT/dt=-A(T^3-T_l^3), where the heat capacity is C=αTC=\alpha T and TlT_l is the base lattice temperature. These results are in disagreement with predictions of electron-phonon emission in a disorder-free graphene system, but in excellent quantitative agreement with recent predictions of a disorder-enhanced supercollision (SC) cooling mechanism. We find that the SC model provides a complete and unified picture of energy loss near the Fermi level over the wide range of electronic (15 to \sim3000 K) and lattice (10 to 295 K) temperatures investigated.Comment: 7pages, 5 figure

    Terahertz response of patterned epitaxial graphene

    Get PDF
    We study the interaction between polarized terahertz (THz) radiation and micro-structured large-area graphene in transmission geometry. In order to efficiently couple the radiation into the two-dimensional material, a lateral periodic patterning of a closed graphene sheet by intercalation doping into stripes is chosen. We observe unequal transmittance of the radiation polarized parallel and perpendicular to the stripes. The relative contrast, partly enhanced by Fabry-Perot oscillations reaches 20 %. The effect even increases up to 50 % when removing graphene stripes in analogy to a wire grid polarizer. The polarization dependence is analyzed in a large frequency range from < 80 GHz to 3 THz, including the plasmon-polariton resonance. The results are in excellent agreement with theoretical calculations based on the electronic energy spectrum of graphene and the electrodynamics of the patterned structureThe authors thank J. Jobst for fruitful discussions. The research was performed in the framework of the Sonderforschungsbereich 953 "Synthetic carbon allotropes", funded by Deutsche Forschungsgemeinschaft. We acknowledge support from the EC under Graphene Flagship (contract no. CNECT-ICT-604391)
    corecore