2,486 research outputs found

    Étude paléolimnologique de l'histoire trophique du lac Saint-Charles, réservoir d'eau potable de la Communauté Urbaine de Québec

    Get PDF
    Cette étude utilise une approche paléolimnologique pour reconstituer l'histoire trophique du réservoir d'eau potable de la Communauté Urbaine de Québec (CUQ), le lac Saint-Charles. Ce lac manifeste présentement un manque d'oxygène près du fond à la fin de la stratification estivale et hivernale. L'étude révèle des changements dans la communauté diatomifère fossile depuis environ les 150 dernières années. L'événement ayant entraîné le plus de changements biologiques et physico-chimiques dans le bassin est la transformation hydrologique engendrée par la construction d'un barrage en 1934 qui éleva le niveau du lac d'environ 1,5 à 2 mètres. Par conséquent, il y eut des changements dans la structure des communautés de diatomées avec des effets sur le ratio espèces planctoniques / benthiques, sur la paléoproductivité et les caractéristiques physico-chimiques des sédiments suivant cette période. Les assemblages diatomifères indiquent que les conditions mésotrophes se sont maintenues pendant toute la période étudiée. L'analyse du phosphore total dans les sédiments et la reconstitution à partir des diatomées fossiles du phosphore total dans l'eau montrent une légère diminution de la concentration en phosphore avec le temps. Ces observations démontrent qu'il n'y a pas eu d'accélération du processus d'eutrophisation engendrée par les activités humaines. Par contre, l'analyse géochimique des sédiments révèle un apport plus important de métaux depuis la fin du 19e siècle, qui atteint un plateau vers la fin des années 70.This study adopted a combined paleolimnological-limnological approach towards evaluating the trophic history of Lake Saint-Charles, the drinking water reservoir for a population of 305,000 in the Québec City (Canada) region. Our limnological measurements indicate that the lake is currently in a state of advanced mesotrophy. Water column profiles during late summer stratification (September) showed that the bottom waters were anoxic, enriched in phosphorus (up to 17 µg total P L-1) and had a pH almost 2 units lower than the surface waters. Surface phytoplankton concentrations were high at this time of year with Chlorophyll a concentrations of up to 12 µg·L-1. At the end of winter stratification, oxygen concentrations were below saturation at all depths, ranging from 72% immediately under the ice to 4% at the bottom of the water column. This tendency towards eutrophic conditions was offset, however, by a rapid flushing rate (mean hydraulic residence time=23 days). Because there are concerns that the lake has experienced accelerated nutrient enrichment due to increased human activities in its drainage basin, the objectives of our paleolimnological approach were to document the recent trophic history of this lake, to estimate the extent of recent changes in trophic status, and to identify critical periods of past anthropogenic disturbances from the fossils of siliceous algae (diatoms; class Bacillariophyceae) preserved in its sediments. Quantitative estimates of past total phosphorus (TP) concentrations in the water column of Lake Saint-Charles were obtained by applying a diatom-TP reconstruction model developed for 54 lakes located in south-eastern Ontario to fossil diatom assemblages from a 28 cm long sediment core. The timing of changes in the fossil diatom record was estimated by210 Pb dating. The study reveals changes in fossil diatom assemblage composition during the past ca. 150 years, with the most striking biological and physico-chemical changes occurring immediately after 1934. This date coincides with the construction of a dam, which raised the lake water level by 1.5-2 m. This modification was accompanied by significant shifts in diatom community structure, especially in the planktonic/benthic ratio (with increases in planktonic diatoms Cyclotella stelligera and Aulacoseira distans), and by changes in the physico-chemical characteristics of the sediments. Paleoproductivity increased at the same time, but remained more or less stable following conservation efforts between 1950 and 1970 (e.g., construction of a sewage treatment system). The organic matter content of the sediments showed an increase in the order of 20% between 1850 and 1950, after which it remained constant. Fossil diatom community structure indicates that mesotrophic conditions have prevailed during the recent history of Lake Saint-Charles, and that diatoms typical of eutrophic conditions never became established in the lake. The geochemical analysis of phosphorus in the sediments as well as the diatom-inferred quantitative reconstruction of lake water total phosphorus reveals a slight decrease in total phosphorus over time, from close to 17 µg·L- prior to 1887 to about 13 µg·L- 1 in recent times. These observations suggest that Lake Saint-Charles has not experienced significant recent changes in trophic status due to increased human activities in its drainage basin. However, our geochemical analyses show a sharp rise in metal concentrations (especially Fe, Mn, Cu, Pb and Zn), beginning in the late 19th century, reaching a plateau by the late 1970s, which may be attributed to increased atmospheric pollution since the beginning of intense human colonization in the lake's catchment and surrounding areas. This in combination with the advanced mesotrophic status of the lake indicates the ongoing need for careful management of the watershed to prevent further changes in this important urban water resource

    Floristic and structural distinctness of monodominant Gilbertiodendron dewevrei forest in the western Congo Basin

    Get PDF
    Background and aims – The forests of the Congo Basin contain high levels of biodiversity, and are globally important for carbon storage. In order to design effective conservation strategies, and to accurately model carbon stocks, a fine-scale understanding of the different forest types that make up this forest block is needed. Monodominant Gilbertiodendron dewevrei forest covers large areas of the Congo Basin, but it is currently unclear whether it is sufficiently distinct from adjacent mixed terre firme forest to warrant separate treatment for conservation planning and carbon calculations. This study aimed to compare the structure and diversity of monodominant and mixed forest, and ask whether there is a unique vascular plant community associated with G. dewevrei forest.Material and methods – We utilised a combination of plot data and herbarium specimens collected in the Sangha Trinational (a network of protect areas in Cameroon, Central African Republic, and the Republic of Congo). Plot inventories were used to compare G. dewevrei forest and mixed forest for stem density, basal area, above ground biomass, stem size distribution, species diversity, and species composition. In addition, a database of 3,557 herbarium specimens was used to identify species of vascular plant that are associated with G. dewevrei forest.Key results – Gilbertiodendron dewevrei forest is distinct in both structure and species composition from mixed forest. Gilbertiodendron dewevrei forest has a lower stem number (of trees ≥ 10 cm), but a greater proportion of larger trees (> 70 cm), suggesting higher carbon stocks. The species composition is distinct from mixed forest, with 56 species of vascular plant significantly associated with G. dewevrei forest

    The digital mirror Langmuir probe: Field programmable gate array implementation of real-time Langmuir probe biasing

    Get PDF
    High bandwidth, high spatial resolution measurements of electron temperature, density, and plasma potential are valuable for resolving turbulence in the boundary plasma of tokamaks. While conventional Langmuir probes can provide such measurements, either their temporal or spatial resolution is limited: the former by the sweep rate necessary for obtaining I-V characteristics and the latter by the need to use multiple electrodes, as is the case in triple and double probe configurations. The Mirror Langmuir Probe (MLP) bias technique overcomes these limitations by rapidly switching the voltage on a single electrode cycling between three bias states, each dynamically optimized for the local plasma conditions. The MLP system on Alcator C-Mod used analog circuitry to perform this function, measuring Te, VF, and Isat at 1.1 MSPS. Recently, a new prototype digital MLP controller has been implemented on a Red Pitaya Field Programmable Gate Array (FPGA) board which reproduces the functionality of the original controller and performs all data acquisition. There is also the potential to provide the plasma parameters externally for use with feedback control systems. The use of FPGA technology means the system is readily customizable at a fraction of the development time and implementation cost. A second Red Pitaya was used to test the MLP by simulating the current response of a physical probe using C-Mod experimental measurements. This project is available as a git repository to facilitate extensibility (e.g., real-time control outputs and more voltage states) and scalability through collaboration

    Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine.

    Get PDF
    OBJECTIVE: Circulatory shock is a life-threatening syndrome resulting in multiorgan failure and a high mortality rate. The aim of this consensus is to provide support to the bedside clinician regarding the diagnosis, management and monitoring of shock. METHODS: The European Society of Intensive Care Medicine invited 12 experts to form a Task Force to update a previous consensus (Antonelli et al.: Intensive Care Med 33:575-590, 2007). The same five questions addressed in the earlier consensus were used as the outline for the literature search and review, with the aim of the Task Force to produce statements based on the available literature and evidence. These questions were: (1) What are the epidemiologic and pathophysiologic features of shock in the intensive care unit ? (2) Should we monitor preload and fluid responsiveness in shock ? (3) How and when should we monitor stroke volume or cardiac output in shock ? (4) What markers of the regional and microcirculation can be monitored, and how can cellular function be assessed in shock ? (5) What is the evidence for using hemodynamic monitoring to direct therapy in shock ? Four types of statements were used: definition, recommendation, best practice and statement of fact. RESULTS: Forty-four statements were made. The main new statements include: (1) statements on individualizing blood pressure targets; (2) statements on the assessment and prediction of fluid responsiveness; (3) statements on the use of echocardiography and hemodynamic monitoring. CONCLUSIONS: This consensus provides 44 statements that can be used at the bedside to diagnose, treat and monitor patients with shock

    Risk of death in the long QT syndrome when a sibling has died

    Get PDF
    BACKGROUND: Sudden death of a sibling is thought to be associated with greater risk of death in long QT syndrome (LQTS). However, there is no evidence of such an association. OBJECTIVE: This study sought to test the hypothesis that sudden death of a sibling is a risk factor for death or aborted cardiac arrest (ACA) in patients with LQTS. METHODS: We examined all probands and first-degree and second-degree relatives in the International Long QT Registry from birth to age 40 years with QTc >/= 0.45 s. Covariates included sibling death, QTc, gender by age, syncope, and implantable cardioverter-defibrillator (ICD) and beta-blocker treatment. End points were (1) severe events (ACA, LQTS-related death) and (2) any cardiac event (syncope, ACA, or LQTS-related death). RESULTS: Of 1915 subjects, 270 had a sibling who died. There were 213 severe events and 829 total cardiac events. More subjects with history of sibling death received beta-blocker therapy. Sibling death was not significantly associated with risk of ACA or LQTS-related death, but was associated with increased risk of syncope. QTc >/= 0.53 s (hazard ratio 2.5, P <.01), history of syncope (hazard ratio 6.1, P <.01), and gender were strongly associated with risk of ACA or LQTS-related death. CONCLUSION: Sudden death of a sibling prompted more aggressive treatment but did not predict risk of death or ACA, whereas QTc >/= 0.53 s, gender, and syncope predicted this risk. All subjects should receive appropriate beta-blocker therapy. The decision to implant an ICD should be based on an individual's own risk characteristics (QTc, gender, and history of syncope)

    Benznidazole biotransformation and multiple targets in <i>Trypanosoma</i> cruzi revealed by metabolomics

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;&lt;p&gt;&lt;/p&gt; The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn). Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methodology/Principal findings&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, γ-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions/significance&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Derivation, validation, and clinical relevance of a pediatric sepsis phenotype with persistent hypoxemia, encephalopathy, and shock

    Get PDF
    OBJECTIVES: Untangling the heterogeneity of sepsis in children and identifying clinically relevant phenotypes could lead to the development of targeted therapies. Our aim was to analyze the organ dysfunction trajectories of children with sepsis-associated multiple organ dysfunction syndrome (MODS) to identify reproducible and clinically relevant sepsis phenotypes and determine if they are associated with heterogeneity of treatment effect (HTE) to common therapies. DESIGN: Multicenter observational cohort study. SETTING: Thirteen PICUs in the United States. PATIENTS: Patients admitted with suspected infections to the PICU between 2012 and 2018. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We used subgraph-augmented nonnegative matrix factorization to identify candidate trajectory-based phenotypes based on the type, severity, and progression of organ dysfunction in the first 72 hours. We analyzed the candidate phenotypes to determine reproducibility as well as prognostic, therapeutic, and biological relevance. Overall, 38,732 children had suspected infection, of which 15,246 (39.4%) had sepsis-associated MODS with an in-hospital mortality of 10.1%. We identified an organ dysfunction trajectory-based phenotype (which we termed persistent hypoxemia, encephalopathy, and shock) that was highly reproducible, had features of systemic inflammation and coagulopathy, and was independently associated with higher mortality. In a propensity score-matched analysis, patients with persistent hypoxemia, encephalopathy, and shock phenotype appeared to have HTE and benefit from adjuvant therapy with hydrocortisone and albumin. When compared with other high-risk clinical syndromes, the persistent hypoxemia, encephalopathy, and shock phenotype only overlapped with 50%-60% of patients with septic shock, moderate-to-severe pediatric acute respiratory distress syndrome, or those in the top tier of organ dysfunction burden, suggesting that it represents a nonsynonymous clinical phenotype of sepsis-associated MODS. CONCLUSIONS: We derived and validated the persistent hypoxemia, encephalopathy, and shock phenotype, which is highly reproducible, clinically relevant, and associated with HTE to common adjuvant therapies in children with sepsis
    corecore